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ABSTRACT 

Cutting force prediction is one of the important responses that is highly considered during the manufacturing 

process, mostly via computer numerical control machine. Parameters employed in the industry to transform raw materials 

into finished products, such as the machining parameters, have many challenges during operations. This can lead to high 

cutting force, which leads to high energy consumption during operations. Therefore, this study focuses on the optimal 

prediction of the cutting force of aluminium 8112 alloys via machining using ANFIS-PSO and ANFIS-GA for a 

sustainable cutting process. The experimental data was obtained from a machining experiment with five cutting 

parameters: cutting speed, helix angle, feed rate, machining length, and depth at five levels. Also, this experiment was 

carried out in an eco-friendly machining lubricant (TiO2 nano-lubricant), and a dynamometer was used to record the 

cutting force during operations for every one of the 50 runs of the experiment. The ANFIS-PSO and ANFIS-GA were 

employed to predict the cutting force with a ratio of training and testing of 35:15. The results show that ANFIS-PSO and 

the ANFIS-GA predicted the cutting force with 91.98% and 93.98% for the training data of the model and 90.11% and 

92.1% for the testing data respectively. The interaction between the five cutting parameters shows that the helix angle and 

the machining length have a good relationship during the machining process. Also, the results show that the cutting force 

decreases as the helix angle decreases with the machining length.  
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1. INTRODUCTION 

Cutting force is a crucial sign of the energy and power 

required for machining. Reducing the frictional forces at 

the rake face and flank face will help to reduce the 

machining forces [1]. Both cutting force and friction can 

be reduced by choosing the proper cutting fluid. Axial and 

radial forces are the two main types of cutting forces. The 

direction of action of axial forces is parallel to the spindle. 

Perpendicular to the spindle, radial forces operate [2]. The 

part material and the tool's substrate, coating, rake angle, 

and helix angle all affect the specific cutting force 

coefficients. No universal guidelines can be applied to 

forecast the values of the coefficients because the link 

between them and these parameters is so intricate. The 

precise and extremely dynamic force measurements made 

possible by this structure enable prompt quantification of 

even the tiniest changes in the process chain. Cutting 

forces Fc, feed forces Ff, and passive forces Fp can all be 

quantified in terms of three components using multi-

component dynamometers. Therefore, the study of the 

machining of aluminium alloy is very significant in the 

manufacturing industry for its application in mechanical, 

design, and production processes. Al8012 Alloy is an 8000 

series aluminium with an excellent strength-to-weight 

ratio. However, optimal prediction is highly needed for 

material adhesion during machining. Aluminium alloys 

will be reduced since surface finishing and reduced cutting 

forces are needed to reduce the high energy consumption 

level during machining. Sustainable cutting fluid is also 

useful in reducing the cutting force because reducing the 

cutting force will reduce energy consumption during the 

application [3]. 

The lubricating oil wear, friction, heat, substance, and 

physical properties are all impacted by the presence of 

nanoparticles in it. One lubricant additive that shows 

promise for improving machining efficiency is titanium 

dioxide (TiO2). Okokpujie et al. [4] study compared the 

effects of MWCNTs nano-lubricant and environmentally 

friendly vegetable oil-based TiO2 on cutting force when 

machining AL-8112 alloys. Before being applied in 

machining using an ultrasonic vibrator and a magnetic 

stirrer, nanoparticles were introduced to the base oil as 

part of the lowest quantity lubrication process. The 

experiment used quadratic central composite designs to 

utilise five factors at five levels and fifty experimental 

runs. Helix angle (HA), spindle speed (SS), feed rate (FR), 

axial depth of cut (ADOC), and length of cut (LOC) are 

the input parameters. The outcomes demonstrate that 

applying the nanoparticle improves the vegetable oil's 

cutting force performance. When compared to MWCNTs, 

TiO2 nano-lubricant lowers the cutting force by 0.26%, 

and when compared to vegetable oil, it decreases it by 6%. 

In addition, 5% less cutting force is required when using 

the MWCNT nano-lubricant than in a vegetable oil 

lubrication environment. This study shows that TiO2 nano-

vegetable lubricant is exceptional for machining 

operations. Besides the cutting fluid that reduces the 

cutting force during machining, there is a need for 
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prediction and optimisation tools for accuracy analysis for 

future works. 

Genetic algorithm (GA) and particle swarm 

optimisation (PSO) are optimisation techniques for 

assessing the arbitrarily generated significant population 

for fitness functions. All of them use Homogenous 

Population Subgrouping to enhance the quality of the 

solution as the already fast process of clustering of the 

solution is further slowed down. GA is a presentation that 

develops a method by which it is possible to solve both 

restricted and unrestricted optimisation problems of a 

biological process that takes place in nature. The model 

revises a set of possible solutions to a problem regularly. 

GA randomly selects individuals of the current generation 

to be parents throughout every phase of the subsequent 

generation's progeny. The population mutates toward the 

best solution into the generations of the future. PSO, on 

the other hand, can be defined as a computing concept 

where the optimisation of algorithms, as well as other 

patterns characteristic of engineering and mathematics, is 

employed to solve problems, which, in the process, strives 

to optimise a candidate solution (particle)—relating to the 

firm or enterprise in matters of quality in some rated scale. 

It solves the problem by initiating a beginning population 

potential solutions while referring to them as particles and 

shifting their places in the search domain in a manner 

related to the position and velocity determinable by way of 

the basic formula, then shored by their respective 

occupational roles. PSO particles auto-update instead of 

crossover and mutation genetics, and candidates use their 

internal selection velocity. 

In this work, Jain and Raj [5] aim to create a model to 

forecast the cutting forces involved in a turning operation. 

This work focuses on developing an adaptive neuro-fuzzy 

inference system (ANFIS) monitoring system that can 

identify cutting force based on cutting parameters such as 

spindle speed, feed, and depth of cut. One of the crucial 

characteristics that must be monitored and managed during 

the cutting processes to ascertain the workpiece's surface 

roughness and tool life is the cutting force. The main 

presumption was that as the tool wears, the cutting forces 

rise. Thus, the cutting force signal is expressed using the 

ANFIS model. The cutting force is predicted in this work 

using ANFIS. This modelling yielded a correlation 

coefficient (R) of 0.9976 and an average percentage error 

of 2.59%. The experimental data and the projected cutting 

force values obtained by ANFIS were compared. The 

comparison shows that the accuracy achieved by the 

ANFIS was quite good. This modelling yielded a 

correlation coefficient (R) of 0.9976 and an average 

percentage error of 2.59%. The ANFIS's prediction 

accuracy was as high as 97%. However, this article is 

limited because the study considered only three cutting 

parameters, which cannot justify the accuracy of the 

prediction. In the study of Okokpujie and Tartibu [6], a 

quadratic rotatable central composite design (QRCCD) 

was employed to predict the cutting force. The (QRCCD) 

predicted the cutting force with 89.70%, which in the 

standard prediction analysis is viable for forecasting the 

cutting force. 

Therefore, this study aimed to conduct optimal 

prediction of the cutting force of Al8112 alloy via 

machining using an ANFIS-PSO and ANFIS-GA for a 

sustainable cutting process. The research considered five 

machining factors: cutting speed, feed rate, helix angle and 

length, and machining depth. The significance of this 

study is the implementation of ANFIS-PSO and ANFIS-

GA in the prediction of Al8112 alloys, which has not been 

done before.  

 

2. METHODOLOGY 

The materials employed in this study are Al8112 

alloys, TiO2 nano lubricants, and high-speed steel, which 

are used as the cutting tool. The method used in the 

generation of the data and the artificial intelligence tool 

employed for the optimal prediction are discussed in the 

subsections. 

 

2.1 Dataset Description for the Cutting Force 

This experiment used the SIEG 3/10/0016 CNC 

machine to end-mill the AL8112 alloy. The CNC milling 

machine comprises three (3) x, y, and z planes. The end-

milling process comprises five variables (spindle speed, 

feed rate, length of cut, depth of cut, and helix angle) and 

five levels of the experiment. The cutting fluid is a nano-

lubricant composed of copra oil and titanium dioxide 

(TiO2). There are multiple steps in this section. The 

following methods were employed in the experimental 

inquiry:  

i. The rectangular plate made of aluminium 8112 

alloys was cut into multiple machining lengths, 

namely 20, 30, 40, 50, and 60 mm. For TiO2, 50 

pieces were considered in a cut-off machine 

setting. 

ii. TiO2 nano-lubricants are ready for end-milling 

machining while the top of the CNC milling 

device is cleaned. Using various level cutting 

speeds of 2000, 2500, 3000, 3500, and 4000 (rpm), 

feed rates of 100, 150, 200, 250, and 300 

(mm/min), machining depths from 1 to 3 (mm), 

and helix angle of 0 to 60 oC. 

iii. The end-milling tip's spindle head was fitted with 

a 13 mm-diameter High-Speed Steel (HSS) cutting 

tool. 

iv. Securing the dynamometer and AL-8112 alloy 

with a vibration-reducing device after mounting 

them on the machine's bench bed. 

v. When creating the CNC part software design, 

which contained specific commands for 

implementing different machining lengths, feed 

rates, machining, helix angles, and cutting speeds, 

the Y- and Z-axes were used as references. 

vi. The dynamometer records the cutting force for 

each sample for 50 samples while the machining 

process is underway, using different machining 

parameters, as seen in Figure 1.  
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Figure-1. The experimental setup for the machining 

process. 

 

During the machining experiment, the dynamometer 

measures the cutting force for each 50 samples in the three 

cutting conditions. As seen in Figure 1, with a strain gauge 

section, 350 OHMS span resistance, an ultimate voltage of 

5 volts, and an indication range of 0–300 KGF, the 

dynamometer has four arms. The dynamometer contains 

three (3) stages that show the cutting forces along the X, 

Y, and Z axes for each machining process. Eq. (1) 

calculated the total cutting force following the 

measurement [15]. For this study, the directional cutting 

forces are Cx (X-axis), Cy (Y-axis), and Cz (Z-axis), and 

the resulting force is  𝐶𝑓 =  √𝐶𝑥2 + 𝐶𝑦2 + 𝐶𝑧2                                                  (1)   
 

2.2 Method of the Prediction Process for the Cutting 

Force Prediction via ANFIS-PSO and ANFIS-GA 

Segmentation jobs, rule-based procedure controls, 

recognising patterns issues, and approximate function 

issues are among the applications of ANFIS [7]. The best 

way to distribute membership functions is determined by 

the mapping relation between the input and output data in 

the ANFIS architecture, which combines fuzzy logic and 

artificial neural networks. Fuzzy logic (FL) theory and 

adaptive neural network (ANN) concepts are integrated in 

adaptive network frameworks. The fuzzy interference 

system (FIS) application was created using FL theory, and 

by trial and error, the membership functions (MF) of FIS 

were enhanced. The FIS model is built using the ANN 

process in the ANFIS approach. This makes it possible for 

the supplied data to train the neural network. Concurrently 

mapping the results are the factors in the Sugeno category 

IF-THEN rule structure. 

Figure 2 depicts the overall layout of the ANFIS 

framework. This inference system consists of five 

different layers. This includes the following layers: the de-

fuzzy layer (iv), the fuzzy layer (i), the product layer (ii), 

the normalised layer (iii), and the overall output layer (v). 

Each stratum has unique nodes represented by squares, 

adaptive nodes and changeable factors. Circles, on the 

other hand, represent the fixed nodes, where the factors 

never change. You can find the mathematical expression 

in Okokpujie and Tartibu [8]. The study takes into account 

two fuzzy if-then rules to describe the rules associated 

with each layer given in Eq.s (2) and (3): 

 𝑅𝑢𝑙𝑒 1: 𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑓=  𝑃1𝑥 + 𝑞1𝑦 + 𝑟1                             (2) 

 𝑅𝑢𝑙𝑒 2: 𝑖𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑓=  𝑃2𝑥 + 𝑞2𝑦 +  𝑟2                            (3) 

 

 
Figure-2. ANFIS architecture adopted for the cutting-

force prediction analysis 

 

If f is the output (linguistic variables), A1 and B1 are 

fuzzy sets, and x and y are the input variables. The 

following parameters—{pi}, {qi}, and {ri}—should be 

measured as part of the ANFIS training procedure. The 

following metrics can be used to gauge each layer's 

function:  

First Layer: Every node (i) in this layer is defined by a 

membership function. Membership functions in fuzzy 

logic are used to make the variables fuzzy. These 

membership functions are curves that specify the mapping 

from a point in the input space to a membership value in 

the [0,1] interval. There are several membership functions, 

the most popular being the Gaussian, Trapzoidum, and 

Triangular types, which give Eq. (4) and Eq. (5) [9]. 

 𝑄 1.𝑖 = 𝜎𝐴1(𝑥)                                                                           (4) 

 𝑄 1.𝑖 = 𝜎𝐵1(𝑥)                                                                          (5) 

Where x is identified as Q1 and node input, i is the 

membership function of Ai, which the Gaussian function 

often defines as follows in Eq. (6): 

 𝜎𝐴1(𝑥)  = exp −(𝑥 − 𝑐)2𝜎2                                                  (6) 

The antecedent parameters in this formula are the 

standard deviation (σ) and the centre of the Gaussian 
membership function (C), respectively. These parameters 

are important for membership functions, and the 

optimisation algorithm determines their worth.  
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Second Layer: The following relation determines a rule's 

firing strength is given in Eq. (7): 

 𝑤 𝑖 =  𝜎𝐴𝑖(𝑥) X 𝜎𝐵𝑖(𝑥)          𝑖 = 1.2                                       (7) 

 

Third Layer: By dividing the projectile strength of the ith 

rule by the overall firing power of all rules, the firing 

strength of each rule is normalised in Eq. (8). 

 𝑄 3.𝑖 = 𝑤𝑖̅̅ ̅ =  𝑤𝑖𝑤1 + 𝑤2     𝑖 = 1.2                                       (8) 

 

Fourth Layer: The fuzzy rule's outcome portion is 

measured in the manner described in Eq. (9): 

 𝑄 4.𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 =  𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞1𝑦 +  𝑟1)          𝑖 = 1.2   (9) 

 

Where {pi, qi, ri} are the set of consequent parameters 

computed by the optimisation algorithm.  

 

Fifty Layer: In this layer, all the outputs of the fourth layer 

are added to form Eq. (10). 𝑄 5.𝑖 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖𝑅𝑖=1                                𝑖 = 1.2   (10) 

 

 
Figure-3. Neural network model for cutting force. 

 

 
Figure-4. ANFIS structure. 

Antecedent and consequent parameters are typically 

the two structural parameters of the ANFIS model [10]. 

The ANFIS model's antecedent and consequent parameters 

are typically changed using gradient-based techniques 

[11]. The fact that the solution is located in local 

optimality and that the gradient-based approaches' rate of 

convergence is slow is one of their problems [12]. Figs. 3 

and 4 show the neural network model and ANFIS structure 

for cutting force. The problems with gradient-based 

approaches can be effectively resolved by applying 

metaheuristic algorithms using particle swarm 

optimisation (PSO) [13]. Figure 5 shows the method for 

the ANFIS-PSO, and Figure 6 the ANFIS-GA for the 

model using metaheuristic optimisation approaches PSO 

and GA. 

One of the nature-inspired optimisation techniques 

is the PSO algorithm, which Hub and Kennedy originally 

developed in 1995 [14]. This approach mostly addresses 

large-scale numerical optimisation problems without 

knowledge of the target function gradient [15]. A 

population of potential solutions is randomly moved into 

the problem domain using a straightforward formula 

to solve a problem. Next, it investigates to locate the best 

possible global solution (each potential solution is referred 

to as a particle). Like the PSO algorithm, the method 

generates a population of randomly generated solutions by 

searching inside the problem area, akin to the genetic 

algorithm [16]. The hybrid ANN-GA model was trained 

using experimental data, and parametric analysis was 

carried out by altering the subsequent variables: Number 

of inhabitants: 25, 50, 75, and 100; five to ten hidden 

neurones are present, regarding the following the 

construction of the set to optimise the ANFIS using the 

GA algorithm, the chromosome encoding, fitness function, 

selection, recombination, and the scheme of evolution for 

the cutting force. 

However, in contrast to genetic algorithms, the PSO 

method assigns a random velocity to every possible 

solution to the optimisation problem, that is, to every 

particle so that every iteration moves a single particle 

about its velocity. Furthermore, each particle in the PSO 

algorithm should store the optimal solution to the 

optimisation problem from the beginning of the program 

until the end of the last iteration, in contrast to the genetic 

algorithm. Like the evolutionary algorithm, the PSO 

algorithm is suitable for resolving continuous 

unconstrained maximisation problems. However, minor 

modifications to the function specification can also be 

applied to continuous state optimisation problems (such as 

minimisation or maximisation) [17]. These Particles all 

have five characteristics. The position is determined by the 

objective function corresponding to the current location, 

speed, optimal position, and quantity of objective function 

corresponding to the optimal position attained. Eqs 

determine each particle's position and speed inside the 

algorithm. (11) and (12). and according to the data from 

the preceding phase. These Eqs. designate r1 and r2 as 

random integers and c1 and c2 as the velocity constants. P-

best, the weight of inertia comprises x, v, Pt, and Gt. 
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𝑉𝑖𝑗𝑡 =𝜒[𝜔𝜐𝑖𝑗𝑡−1 + 𝑐1𝑟1(𝑝𝑖𝑗𝑡−1 − 𝑥𝑖𝑗𝑡−1) +𝑐2𝑟2(𝐺𝑗𝑡−1 − 𝑥𝑖𝑗𝑡−1)]                

(11) 𝑥𝑖𝑗𝑡 = 𝑥𝑖𝑗𝑡−1 + 𝜐𝑖𝑗𝑡                                                                                

(12) 

 

 

 
Figure-5. The procedure of the ANFIS-PSO prediction 

analysis. 

 

The genetic algorithm model starts with a group of 

solutions, chromosomes. A new population is created by 

completing a previous population. The fitness of the new 

solution formed from selected offspring is signed. This 

process is carried out repeatedly until a condition, i.e., the 

optimal solution's improvement, is met. To accomplish 

this, the ANFS algorithm, part of the fitness function, 

plays an essential role in f(x). The fitness with the ANFIS 

algorithm function intervention is represented by 

equations (13) and (14) 

 

𝑓1(𝑥) −  1𝑚 √∑ 𝑜(𝑑𝑖 − 𝑎𝑖)2𝑚
𝑖                                        (13) 

Where m is the number of characteristics, ai is the output 

derived from the ANFIS, and di is the predicted traffic 

volume. The next fitness function is given in Equation 

(15) 

 𝑓2(𝑥) − 1𝑛−𝑚  √∑ 𝑚(𝑑𝑖 − 𝑎𝑖)2𝑚𝑖                 (14)       

𝑓(𝑥) − 𝑓1(𝑥) + 𝑓2(𝑥)2                                   (15) 

Where n is the overall number of input characteristics, di 

is the minimum, ai is the actual value of the traffic 

volume, and n -m indicates the leftover undesired 

attributes. 

 

 
Figure-6. The procedure of the ANFIS-GA prediction 

analysis. 
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3. RESULTS AND DISCUSSIONS 

The analysis of the results obtained from the 

prediction of the ANFIS-PSO and ANFIS-GA model for 

the training and testing data gives an overview of how the 

ANFIS-PSO and ANFIS-GA could predict the cutting 

force accurately.  

 

 

 
Figure-7. The comparative analysis of the Training data prediction with the experimental data for the (a) ANFIS-PSO and 

(b) the ANFIS-GA. 

 

Table 1: Cutting force ANFIS-PSO and ANFIS GA performance metrics. 

 

Performance metrics ANFIS-PSO 

Training 

ANFIS GA 

Training 

ANFIS-PSO 

Testing 

ANFIS GA 

Testing 

Mean absolute percentage error MAPE 8.7607 5.9482 9.8050 7.9694 

Mean Absolute Error MAE 6.4491 3.5283 5.8444 5.8277 

mean absolute deviation MAD 6.4176 2.6070 4.2541 5.7618 

Root Mean Square Error RMSE 6.9869 3.7641 6.1992 6.4925 

Coefficient of Determination R2 0.919 0.9398 0.9011 0.921 

(a) 

(b) 
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Five machining parameters were considered for the 

study: cutting speed, feed rate, machining length, helix 

angle, and machining depth. Having a Coefficient of 

Determination R2 of 0.9198 and 0.9398 for the training 

process for both the ANFIS-PSO and ANFIS-GA shows 

that the ANFIS-GA was able to perform excellently well 

in the prediction of the cutting force during the training 

session. For the testing process, the ANFIS-PSO has an R2 

value of 0.9011 and the ANFIS-GA R2 value of 0.921 for 

the testing data. The RMSE of 6.9869 and 3.7641 for the 

training data and 6.1992 and 6.4925 for the testing 

prediction data were obtained for both ANFIS-PSO and 

ANFIS-GA. From the analysis via the ANFIS-PSO, the 

MAPE obtained are 8.7607 and 9.8050 for training and 

testing, respectively. Table 1 shows the ANFIS-PSO and 

ANFIS-GA performance metrics that justify the prediction 

accuracy. The data of 50 samples, 35 runs were used for 

the training process, and 15 runs were employed for the 

testing process. 

Following the execution of ANFIS-PSO and ANFIS 

GA, Figure 7a and Figure 7b display the Train Data values 

for the ANFIS-PSO and the ANFIS GA, respectively. 

Plots of the target and output values were compared. This 

illustration also includes the calculated error values for 

Train Data. The ANFIS-PSO shows an MSE of 48.8169, 

RMSE of 6.9869, and a standard deviation of 7.091, while 

ANFIS-GA has an MSE of 42.1526, RMSE OF 6.4925, 

and standard deviation of 6.5706. Figure 8a and 8b show 

the linear prediction performance analysis of the ANFIS-

PSO and ANFIS-GA. This proves that the ANFIS-PSO 

and ANFIS-GA can predict the experimental results of the 

cutting force with 91.9% and 93.98%, respectively, during 

the training process.  

The ANFIS-PSO and ANFIS-GA approaches are 

shown in Figure 9a and Figure 9b for the second data 

group in the form of Test Data output. The MSE OF 

38.43, RMSE OF 6.1992, and the ST.D. of 55.73 for the 

ANFIS-PSO, while the ANFIS-GA have a MSE of 

14.1683, RMSE of 3.7641, and ST.D. of 3.4766. This 

analysis shows the accuracy of the ANFIS-PSO and 

ANFIS-GA prediction performance. From the analysis of 

the cutting force, the ANFIS-GA has the most accurate 

prediction, and the model measurement criteria and the 

actual and observed data processing are depicted in Figure 

10a and Figure 10b, which were created to determine the 

coefficient of determination for the testing data group. The 

target and output values for the testing data are compared. 

To determine the coefficient of determination for the test 

data group was created, and the target, statistics R2, output 

values of 90.1% and 92.1% for both the prediction method 

and test data for the cutting force were specified—
standards for judging the outcomes.  

 

 
Figure-8. The comparative analysis of the Training R2 

predicted and experimental data for (a) ANFIS-PSO and 

(b) ANFIS-GA. 
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Figure-9. The comparative analysis of the testing data prediction with the experimental data for the (a) ANFIS-PSO and 

(b) the ANFIS-GA. 
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Figure-10. The comparative analysis of the testing R2 

predicted and experimental data for (a) ANFIS-PSO and 

(b) ANFIS-GA. 
 

Statistical indicators showing the error were used to 

investigate the accuracy of the model generated in this 

study. The (13) to (17) Eqs. Introduce these indicators. 𝑀𝑆𝐸 =  150 ∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖)2  50
𝑖=1                        (13) 

𝑅𝑀𝑆𝐸 =  √ 150 ∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖)2  50
𝑖=1                   (14) 

𝑀𝐴𝐸 =  √ 150 ∑|𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖 | 50
𝑖=1                         (15) 

𝑅2=  ( ∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑇𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 𝑋 (𝑂𝑢𝑡𝑝𝑢𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅√∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑖 −  𝑇𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 𝑋 ∑(𝑂𝑢𝑡𝑝𝑢𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2)2 (16) 

𝑆𝑇𝐷 𝐸𝑟𝑟𝑜𝑟 = √ 150 ∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑢𝑡𝑝𝑢𝑡𝑖)2  50
𝑖=1         (17) 

 

3.1 Study of Parameters on the Cutting Force via 

Surface Plot Analysis 

Figure 11a shows the impact of cutting speed and 

feed rate on the cutting force, and the analysis was carried 

out at a constant machining length of 40 mm, machining 

depth of 2 mm, and helix angles of 30o. It shows that the 

cutting speed, when increased slightly, reduces the cutting 

force due to its ability to reduce the build-up edge at the 

cutting region [18]. However, as the feed rate increases, 

the cutting force increases because the feed rate increases 

vibration and can cause the cutting tool to wear faster, 

affecting the friction occurrences at the cutting region, 

which increases it [19]. This increase will also damage the 

workpiece surface finishing; the ability to predict and 

optimise this parameter greatly reduces cutting force. 

Also, Figure 11b depicts the surface plot analysis of the 

variable's parameter on the cutting force of Machining 

length vs. cutting speed. The machining length is another 

factor affecting cutting force. As the machining length 

increases, chip discontinuity affects the workpiece's 

surface and the cutting process. Cutting fluid is needed to 

remove the discontinuous chips from the cutting region 

[20]. Most of the time, when the machining length is too 

long at the centre of the workpiece, the occurrences of 

high vibration are normal, and at that time, there is a 

tendency for the cutting tool to fail due to wear 

experimentally.  

Figure 11c shows the relationship between the 

machining length and feed rate. From the illustration of 

the graph, the colour variation shows that both parameters 

increase the cutting force as the colour changes from deep 

blue to light blue, and the final changes to yellow to 

increase the machining length and feed rate in this study. 

The cutting speed is 3000 rpm, the machining depth is 2 

mm, and the helix angle is 30o. Figure 11d also shows that 

the trend of the cutting force decreases as the machining 

depth decreases with the machining length. The feed rate, 

helix angle, and cutting speed are kept at 200 mm, 30o, 

and 3000 rpm [21]. The surface plot analysis of the 

variable's parameter on the cutting force of Helix angle vs. 

Machining length is given in Figure 11e. This means that 

the helix angle tends to increase the cutting force because 

as the machining length increases with the angle of cut, 

which is the helix angle, the chips increase, and at that 

time, the weight and the discontinuous chips add up to the 

cutting force. Because the relative movement is part of 

what determines the cutting force, the weight of the chips 

R² = 0,9011
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at the cutting region, and the vibration that occurs. The 

surface plot shows that the cutting speed and the helix 

angle have little relationship because both parameters 

function parallelly [22-23]. That means the cutting speed 

tends to reduce the cutting force, so the helix angle 

increases the cutting force. 

 

 

 

  

 

 
 

Figure-11. The surface plot analysis of the variable's 

parameter on the cutting force (a) Cutting speed vs Feed 

rate, (b) Machining length vs cutting speed, (c) Feed rate 

vs Machining length, (d) Machining length vs Machining 

and (e) Cutting speed vs Helix angle. 

 

4. CONCLUSIONS 

This cutting force analysis project was carried out 

during the machining of Al-8112 alloys via ANFIS-PSO. 

The show considered five (5) major cutting parameters, 

such as cutting speed, feed rate, machining length, helix 

angle, and machining depth, varies in five (5) 

concentration levels under TiO2 nano-lubricant cutting 

conditions. The dynamometer was employed during the 

experiment to determine the cutting force from the three 

(3) axes, and the average value was obtained. The ANFIS-

PSO was employed to train a model via MATLAB 

software, and the model was tested with some 

experimental values. The ratio of training and testing is 

35:15. Therefore, the study has the following conclusions: 

i. It shows from the prediction that ANFIS-PSO was 

able to predict the cutting with five (5) factors and 

(c) 

(d)

(a) 

(e) 

(b) 

(d) 
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five (5) levels having a coefficient of 

determination R2 as 91.98% for training data and 

90.11% for the testing data when compared with 

the experimental data. Also, the ANFIS-GA 

predicted the cutting force with 93.98% for the 

training data and for the testing data 92.1%. 

ii. The mean absolute percentage error (MAPE) is 

also one way of determining the accuracy of the 

prediction analysis. The ANFIS-PSO has an 

8.7607 compared with the ANFIS-GA of 5.9482. 

The smaller the MAPE, the better the prediction 

accuracy of the model. 

iii. The study shows that the interaction of the surface 

plot of the cutting parameters shows a good 

relationship with the helix angle and the 

machining length. 

This study will recommend further study of hybridisers' 

application of the hybrid nano lubricant and the 

optimisation of the interaction between heuristic and 

metaheuristic techniques in predicting the cutting force. 
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