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ABSTRACT 

Fourth order two-point Boundary Value Problems (BVP) usually arise in various fields of science and 

engineering. In this article, cubic B-splines were utilised as basis functions for solving a fourth-order BVP by the Galerkin 

method and we have aimed to reduce the upper bound of the error of the numerical solutions obtained with the help of 

equidistribution of error principle (EDEP). Redefinition of basis functions was implemented to the initially chosen basis 

functions so that they vanish at all the Dirichlet boundary conditions. On applying the EDEP, the error is equidistributed in 

each sub-interval of the space variable domain. The proposed method was applied to several linear and non-linear BVPs. 

The non-linear BVPs were reduced to a sequence of linear BVPs using the concept of quasilinearization. The numerical 

results obtained are presented in the form of maximum absolute errors without and with applying EDEP, validating the 

proficiency and precision of the proposed method.  
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1. INTRODUCTION 

Let us consider the most general form of fourth 

order BVP as follows: 

 q0(t)u(4)(t) + q1(t)u(3)(t) + q2(t)u′′(t) + q3(t)u′(t) +q4(t)u(t) = r(t),     z1 < t <  z2                                       (1) 

 

subject to boundary conditions 

 𝑢(𝑧1) = 𝐴0, 𝑢(𝑧2) = 𝐶0, 𝑢′(𝑧1) = 𝐴1, 𝑢′(𝑧2) = 𝐶1       (2a) 

or 

 u(z1) = A0, u(z2) = C0, u′′(z1) = A2, u′′(z2) = C2  (2b)      

 

or 

 u(z1) = A0,   u(z2) = C0,   u′(z1) + σ1u(z1) =𝐴3, 𝑢′(𝑧2) + 𝜎2𝑢(𝑧2) = 𝐶3                                            (2c) 

 

where 𝐴0, 𝐶0, 𝐴1, 𝐶1, 𝐴2, 𝐶2, 𝐴3, 𝐶3, 𝜎1 and 𝜎2 are finite 

real constants and 𝑞0(𝑡), 𝑞1(𝑡), 𝑞2(𝑡), 𝑞3(𝑡), 𝑞4(𝑡) and 𝑟(𝑡) are all continuous functions defined on the interval [ 𝑧1, 𝑧2]. 
Fourth order BVPs occur in numerous fields of 

science and engineering such as beam theory, fluid 

mechanics, diffusion reaction equations, biomechanics, 

model reaction behaviour of catalytic surfaces, 

electrochemical processes, etc. 

An important tool assisting the pathway for 

solving these BVPs is the Splines. The spline curves were 

brought into action in shipbuilding mechanisms in the 

absence of computers and digital facilities while B-splines 

are used for modelling complex geometries in CAD and 

CAM. In 1966, the concept of B-splines was first 

introduced [1], though its numerical recurrence formula 

for computational purposes was discovered some years 

later [2, 3].  Cubic B-splines were utilised for solving the 

two-point BVP [4]. Solutions were also developed for a 

second order BVP using quadratic spline [5] while in 

progress to previous works, the quartic B-splines were 

used for solving the BVP of order three [6]. Third order 

BVP were also solved using non-polynomial splines [7]. 

On approximating a differential equation using a 𝑘𝑡ℎ order 

spline, the results obtained were accurate up to (𝑘 + 1)𝑡ℎ 

order [8].  

The existence and uniqueness of the real valued 

function 𝑢(𝑡) were thoroughly studied which satisfies the 

BVP (1) with the given boundary conditions (2) [9]. In the 

convection-diffusion process, the asymptotic nature of the 

numerical procedures for solving the fourth order BVP 

was vividly discussed in [10] and the fourth order BVP 

based on the reaction-diffusion phenomenon was solved 

by the shooting method with higher accuracies [11]. The 

analytical solutions for such types of BVPs are available in 

very rare cases. Methods were developed for solving 

BVPs of order two and four using quintic and Sextic 

splines for studying the processes for plate deflection 

theory and other engineering applications [12, 13]. Also, 

numerical solutions for fourth order BVP were obtained 

using quartic splines [14]. Derivations of quintic spline 

and non-polynomial quintic spline methods were put to 

focus on obtaining a direct method and a numerical 
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method for solving two-point BVP [15, 16]. In [17], 

certain variants of fourth order BVP were dealt with in the 

implementations of non-polynomial splines for obtaining a 

smooth approximation for the solutions.  

Finite Element Method (FEM) is the most applied 

tool for solving the BVP due to the arbitrariness of the 

mesh element forms that we can work in complicated 

domains. Galerkin method is one of the variational 

methods in FEM, where the residual of the approximation 

is made orthogonal to the basis functions. In the light of 

using the Galerkin method, cubic B-splines were used to 

solve the fourth order BVP [18]. Solutions were also 

obtained for a general fourth order BVP using the Galerkin 

method with the help of Legendre polynomials [19]. For 

the higher order BVPs arising in fluid mechanics, the 

Galerkin method was implemented for better results [20]. 

In [21], the Sinc-Galerkin method was developed for 

solving the fourth order BVP using the double exponential 

(DE) transformations. In solving a fourth order BVP, the 

super convergence analysis was performed with the aid of 

using the locally discontinuous Galerkin method [22].  The 

equidistribution of Error Principle (EDEP) is a major 

technique used for reducing the error obtained by 

comparing the numerical and analytical results [23].  

Considering the literature survey, the Galerkin 

method has been often used for solving BVPs since the 

Galerkin method provides a solution tending to the exact 

solution provided sufficient attention was paid to the 

boundary conditions. That means the basis functions 

should be zero at the boundary where the Dirichlet 

boundary conditions are mentioned. Here, the general 

linear fourth order BVP is solved using cubic B-splines as 

the basis functions. In this article, we have used various 

boundary conditions for the fourth order linear BVP, and 

the non-linear BVP was reduced to a sequence of linear 

BVPs using the quasilinearization technique [24]. 

Numerical solutions were obtained using the Galerkin 

method with basis functions as cubic B-splines and EDEP 

has been implemented to reduce the error obtained, which 

is the novelty of the present study. 

 

2. DESCRIPTION OF THE PROPOSED METHOD 

The numerical method used in this article 

comprises of Galerkin method as the variational technique 

along with cubic B-splines as the basis functions for 

solving a general linear fourth order BVP (1). The 

proposed method takes care of all possible boundary 

conditions (2a) - (2c) and generalizing it for solving any 

linear fourth order BVP. 

 

2.1 Cubic B-Splines 

In a closed interval [𝑧1, 𝑧2], we consider a cubic 

spline interpolate polynomial 𝑠(𝑡) (created using cubic B-

splines) to a function with the knots chosen in such a way 

that they need not be evenly spaced. 

 𝑧1 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑧2. 
 

Introducing the six additional 

knots 𝑡−3, 𝑡−2, 𝑡−1, 𝑡𝑛+1, 𝑡𝑛+2 and 𝑡𝑛+3 such that 

 t−3 < t−2 < t−1 < t0 and tn < tn+1 < tn+2 < tn+3. 

 

The spline functions 𝐵𝑖(𝑡) are defined as 

 

𝐵𝑖(𝑡) = { ∑ (𝑡𝑟 − 𝑡)+3𝜋′(𝑡𝑟)𝑖+2
𝑟=𝑖−2 ,      𝑖𝑓 𝑡𝜖[𝑡𝑖−2, 𝑡𝑖+2]0,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

where 

 (tr − t)+3 = {(tr − t)3, if tr ≥ t 0,                       if tr ≤ t 
 

and 𝜋(t) = (t − ti−2)(t − ti−1)(t − ti)(t − ti+1)(t − ti+2). 
 

The set {𝐵−1(𝑡), 𝐵0(𝑡), … , 𝐵𝑛(𝑡), 𝐵𝑛+1(𝑡)} forms 

a basis for the space 𝑆3(𝑡) of cubic polynomial splines. 

Among the family of non-zero splines, it was proven that 

in support of the knots  𝑡−3 < 𝑡−2 < 𝑡−1 < 𝑡0 < 𝑡1 < ⋯ <𝑡𝑛 < 𝑡𝑛+1 < 𝑡𝑛+2 < 𝑡𝑛+3, cubic B-splines was having the 

smallest compact support [1]. 

We define the approximation for 𝑢(𝑡) as 

  𝑢(𝑡) = ∑ 𝛼𝑗𝐵𝑗(𝑡)𝑛+1𝑗=−1                                                            (3) 

 

where the nodal parameters 𝛼𝑗′𝑠 are to be determined. At 

all the prescribed Dirichlet types of boundary conditions, 

the B-spline basis functions should vanish as per the 

definition of the Galerkin method. From the set of cubic 

B-splines {𝐵−1(𝑡), 𝐵0(𝑡), 𝐵1(𝑡), 𝐵2(𝑡), … , 𝐵𝑛−1(𝑡), 𝐵𝑛(𝑡), 𝐵𝑛+1(𝑡)}, 
the basis functions 𝐵−1(𝑡), 𝐵0(𝑡), 𝐵1(𝑡), 𝐵𝑛−1(𝑡), 𝐵𝑛(𝑡) 
and 𝐵𝑛+1(𝑡) do not vanish at one of the boundary points. 

Thus, a redefinition of the basis functions becomes 

necessary for them to vanish at all boundaries where 

Dirichlet boundary conditions are specified.  

 

2.1.1 Redefinition of basis functions 

On applying the Dirichlet boundary conditions 

mentioned in (2𝑎) − (2𝑐) in Eq. (3), we get 

 𝑢(𝑧1) = 𝑢(𝑡0) = ∑ 𝛼𝑗𝐵𝑗(𝑡0)1𝑗=−1 = 𝐴0                              (4) 

  𝑢(𝑧2) = 𝑢(𝑡𝑛) = ∑ 𝛼𝑗𝐵𝑗(𝑡𝑛)𝑛+1
𝑗=𝑛−1 = 𝐶0                           (5) 

 

Get the expressions for the nodal parameters 𝛼−1, 𝛼𝑛+1 from equations (4) and (5), and apply them for the 

approximation of 𝑢(𝑡) given in equation (3), finally we get 

   u(t) = m(t) + ∑ αjPj(t)nj=0                                                 (6) 

Where 



                                VOL. 19, NO. 20, OCTOBER 2024                                                                                                           ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1289 

 

 m(t) = A0 B−1(t0) B−1(t) + C0 Bn+1(tn) Bn+1(t) 
 

and 

 

Pj(t) = {  
  Bj(t) − Bj(t0) B−1(t0) B−1(t),                          for  j = 0,1Bj(t),                                            for  j = 2,3,… , n − 2Bj(t) − Bj(tn) Bn+1(tn) Bn+1(t),            for   j = n − 1, n

 

 {𝑃𝑗(𝑡), 𝑗 = 0,1,2, … , 𝑛 − 1, 𝑛} is the newly obtained set of 

basis functions that have the property of vanishing at the 

boundaries where the Dirichlet type boundary conditions 

are prescribed and the Dirichlet boundary conditions 

defined in (2) are dealt by the function 𝑚(𝑡). 
 

2.2 Application of the Galerkin Method to the 

Considered Problem 

When we apply the Galerkin method to equation 

(1) with the newly obtained basis functions𝑃𝑖(𝑡), we 

obtain 

 ∫ [q0(t)u(4)(t) + q1(t)u(3)(t) + q2(t)u′′(t)tnt0 + q3(t)u′(t) + q4(t)u(t)] Pi(t) dt       = ∫ 𝑟(𝑡)𝑃𝑖(𝑡) 𝑑𝑡𝑡𝑛𝑡0   𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑛 − 1, 𝑛.              (7) 

 

2.2.1 Method with boundary condition (𝟐𝐚) 
Applying integration by parts for the fourth and 

third order derivative terms of equation (7) followed by 

implementing the boundary condition(2𝑎), we obtain 

 ∫ q0(t)u(4)(t)Pi(t) dttnt0 = [− ddt [q0(t)Pi(t)]u′′(t)]t0tn + [ d2dt2 [q0(t)Pi(t)]]tn C1 − [ d2dt2 [q0(t)Pi(t)]]t0 A1          −∫ d3dt3 [q0(t)Pi(t)]tnt0 u′(t) dt                                          (8)  

 ∫ 𝑞1(𝑡)𝑢(3)(𝑡)𝑃𝑖(𝑡) 𝑑𝑡𝑡𝑛𝑡0 = −[ 𝑑𝑑𝑡 [𝑞1(𝑡)𝑃𝑖(𝑡)]]𝑡𝑛 𝐶1 +[ 𝑑𝑑𝑡 [𝑞1(𝑡)𝑃𝑖(𝑡)]]𝑡0 𝐴1 + ∫ 𝑑2𝑑𝑡2 [𝑞1(𝑡)𝑃𝑖(𝑡)]𝑡𝑛𝑡0 𝑢′(𝑡) 𝑑𝑡    (9)            

 

On rearranging the terms in equation (7) after the 

substitution of equations(8), (9), and (6), the matrix form 

of the system of equations to get the nodal parameters is 

 𝐾𝛼 = 𝐿                                                                                   (10) 

 

where 

 

K = [kij] = ∫ [− d3dt3 [q0(t)Pi(t)]Pj′(t) + d2dt2 [q1(t)Pi(t)]Pj′(t)tnt0 + q2(t)Pi(t)Pj′′(t) + q3(t)Pi(t)Pj′(t)+ q4(t)Pi(t)Pj(t)] dt− [ddt [q0(t)Pi(t)]Pj′′(t)]t0tn ,   for i = 0,1, … , n , j = 0,1, … , n                                         (11) 

 L = [li] = ∫ [r(t)Pi(t) + d3dt3 [q0(t)Pi(t)]m′(t) − d2dt2 [q1(t)Pi(t)]m′(t)tn
t0 − q2(t)Pi(t)m′′(t) − q3(t)Pi(t)m′(t)− q4(t)Pi(t)m(t)] dt − [ d2dt2 [q0(t)Pi(t)]]tn C1+ [ d2dt2 [q0(t)Pi(t)]]t0 A1 + [ddt [q1(t)Pi(t)]]tn C1− [ddt [q1(t)Pi(t)]]t0 A1+[ddt [q0(t)Pi(t)]m′′(t)]t0tn ,    

 𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑛                                                               (12) 

and 𝛼 = [𝛼0 𝛼1 𝛼2… 𝛼𝑛]𝑇. 

 

2.2.2 Method with boundary condition (𝟐𝐛) 
Applying integration by parts for the fourth and 

third order derivative terms of equation (7) followed by 

implementing the boundary condition(2𝑏), we obtain 

 ∫ 𝑞0(𝑡)𝑢(4)(𝑡)𝑃𝑖(𝑡) 𝑑𝑡𝑡𝑛𝑡0 = = − [ 𝑑𝑑𝑡 [𝑞0(𝑡)𝑃𝑖(𝑡)]]𝑡𝑛 𝐶2 +[ 𝑑𝑑𝑡 [𝑞0(𝑡)𝑃𝑖(𝑡)]]𝑡0 𝐴2 + ∫ 𝑑2𝑑𝑡2 [𝑞0(𝑡)𝑃𝑖(𝑡)]𝑡𝑛𝑡0 𝑢′′(𝑡) 𝑑𝑡  (13) 

 ∫ 𝑞1(𝑡)𝑢(3)(𝑡)𝑃𝑖(𝑡) 𝑑𝑡𝑡𝑛𝑡0 =−∫ 𝑑𝑑𝑡 [𝑞1(𝑡)𝑃𝑖(𝑡)]𝑡𝑛𝑡0 𝑢′′(𝑡) 𝑑𝑡                                       (14) 

 

On rearranging the terms in equation (7) after the 

substitution of equations(13), (14), and (6), the matrix 

form of the system of equations to get the nodal 

parameters is 

  𝐾𝛼 = 𝐿                                                                                 (15) 

 

where 

 K = [kij] = ∫ [ d2dt2 [q0(t)Pi(t)]Pj′′(t) − ddt [q1(t)Pi(t)]Pj′′(t)tnt0 + q2(t)Pi(t)Pj′′(t) + q3(t)Pi(t)Pj′(t)+ q4(t)Pi(t)Pj(t)] dt 
  𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑛 , 𝑗 = 0,1, … , 𝑛                                     (16) 
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L = [li] = ∫ [r(t)Pi(t) − d2dt2 [q0(t)Pi(t)]m′′(t) +tnt0ddt [q1(t)Pi(t)]m′′(t) − q2(t)Pi(t)m′′(t) −q3(t)Pi(t)m′(t) − q4(t)Pi(t)m(t)] dt +[ ddt [q0(t)Pi(t)]]tn C2 − [ ddt [q0(t)Pi(t)]]t0 A2,   for i =0,1, … , n                                                                          (17) 

 

and 𝛼 = [𝛼0 𝛼1 𝛼2… 𝛼𝑛]𝑇. 

 

2.2.3 Method with boundary condition (𝟐𝐜) 
Applying integration by parts for the fourth and 

third order derivative terms of equation (7) followed by 

implementing the boundary condition(2𝑐), we obtain 

  ∫ q0(t)u(4)(t)Pi(t) dt = [− ddt [q0(t)Pi(t)]u′′(t)]x0xntnt0 + [ d2dt2 [q0(t)Pi(t)]]tn (C3 − σ2C0)  −[ d2dt2 [q0(t)Pi(t)]]t0 (A3 − σ1A0) −∫ d3dt3 [q0(t)Pi(t)]tnt0 u′(t) dt                                            (18) 

 ∫ q1(t)u(3)(t)Pi(t) dttnt0 = −[ddt [q1(t)Pi(t)]]tn (C3 −σ2C0) + [ddt [q1(t)Pi(t)]]t0 (A3 − σ1A0)    +∫ 𝑑2𝑑𝑡2 [𝑞1(𝑡)𝑃𝑖(𝑡)]𝑡𝑛𝑡0 𝑢′(𝑡) 𝑑𝑡               (19) 

 

On rearranging the terms in equation (7) after the 

substitution of equations(18), (19), and (6), the matrix 

form of the system of equations to get the nodal 

parameters is 

 𝐾𝛼 = 𝐿                                                                                (20) 

 

where 

 K = [kij] = ∫ [− d3dt3 [q0(t)Pi(t)]Pj′(t) + d2dt2 [q1(t)Pi(t)]Pj′(t) +tnt0q2(t)Pi(t)Pj′′(t) + q3(t)Pi(t)Pj′(t) + q4(t)Pi(t)Pj(t)] dt −[ddt [q0(t)Pi(t)]Pj′′(t)]t0tn , 𝑓𝑜𝑟 𝑖 = 0,1, … , n , j = 0,1, … , n     (21) 

 L = [li] = ∫ [r(t)Pi(t) + d3dt3 [q0(t)Pi(t)]m′(t) −tnt0d2dt2 [q1(t)Pi(t)]m′(t) − q2(t)Pi(t)m′′(t) −q3(t)Pi(t)m′(t) − q4(t)Pi(t)m(t)] dt −[ d2dt2 [q0(t)Pi(t)]]tn (C3 − σ2C0) +[ d2dt2 [q0(t)Pi(t)]]t0 (A3 − σ1A0) +

[ ddt [q1(t)Pi(t)]]tn (C3 − σ2C0) − [ddt [q1(t)Pi(t)]]t0 (A3 −σ1A0) + [ 𝑑𝑑𝑡 [𝑞0(𝑡)𝑃𝑖(𝑡)]𝑚′′(𝑡)]𝑡0𝑡𝑛 , 𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑛 (22) 

and 𝛼 = [𝛼0 𝛼1 𝛼2… 𝛼𝑛]𝑇. 

 

3. PROCEDURE OF SOLVING THE NODAL 

PARAMETERS 

In the stiff matrix K, the general integral element 

is 

 ∑ 𝐼𝑚𝑛−1
𝑚=0  

 

where 𝐼𝑚 = ∫ Ξ𝑖(𝑡)Ξ𝑗(𝑡)𝐻(𝑡) 𝑑𝑡𝑡𝑚+1𝑡𝑚  and Ξ𝑖(𝑡),  Ξ𝑗(𝑡) are 

the cubic B-splines or their derivatives. If (𝑡𝑖−2, 𝑡𝑖+2) ∩(𝑡𝑗−2, 𝑡𝑗+2) ∩ (𝑡𝑚, 𝑡𝑚+1) = ∅, then we can conclude that 𝐼𝑚 = 0. The 4-point Gauss-Legendre quadrature formula 

has been implemented for evaluating each 𝐼𝑚 and thus we 

obtain a seven diagonal band matrix K. The band matrix 

solution package was utilized for solving 𝐾𝛼 = 𝐿 in order 

to obtain the nodal parameter vector 𝛼. To solve the BVP (1) − (2), we have used FORTRAN-90 code. 

 

4. EQUIDISTRIBUTION OF ERROR PRINCIPLE 

(EDEP) 

According to EDEP, we consider a space variable 

domain where we equidistribute the obtained errors in 

each interval of the given domain. Due to this, the error of 

approximation is less when compared with the usual 

methods. 

Assuming that we are using a 𝑘𝑡ℎ order piecewise 

polynomial Ω for approximating a 𝑛𝑡ℎ order differential 

equation of 𝜔 with the independent variable 𝑡 lying in [𝑧1, 𝑧2],  we divide [𝑧1, 𝑧2] into 𝑛 sub-intervals such that 

 𝑧1 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑧2 

Suppose that ℎ𝑖 = 𝑡𝑖 − 𝑡𝑖−1 , for 𝑖 = 1,2, … , 𝑛 

and ℎ = max𝑖 (ℎ𝑖) 
 

Under the presumption of ℎ attaining very small 

values, the approximation error is defined as [23] ‖𝜔 − Ω‖∞ ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 max𝑖 |ℎ𝑖|𝑘 ‖𝑑𝑘𝜔𝑑𝑡𝑘 ‖(𝑖) 
Here, ‖𝑑𝑘𝜔𝑑𝑡𝑘‖(𝑖) is representing the sup-norm of 

the 𝑘𝑡ℎ derivative of 𝜔 concerning 𝑡 in the 𝑖𝑡ℎ interval. 

The points 𝑡1, 𝑡2, … , 𝑡𝑛−1  are the interior points, 

which are placed for minimizing  max𝑖 |ℎ𝑖|𝑘 ‖𝑑𝑘𝜔𝑑𝑡𝑘‖(𝑖). This 

is achieved when the above points are placed in such a 

way that |ℎ𝑖|𝑘 ‖𝑑𝑘𝜔𝑑𝑡𝑘‖(𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛. 
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Since 
𝑑𝑘𝜔𝑑𝑡𝑘  is unknown to us, determining the exact values 

of 𝑡1, 𝑡2, … , 𝑡𝑛−1 becomes quite difficult.  

Since Ω approximates 𝜔, we can approximate 𝑑𝑘𝜔𝑑𝑡𝑘   by  
𝑑𝑘Ω𝑑𝑡𝑘  . Therefore, the placement of the nodes 𝑡1, 𝑡2, … , 𝑡𝑛−1 can be done by taking 

 ∫ ‖𝜕𝑘Ω𝜕𝑡𝑘 ‖1 𝑘⁄ 𝑑𝑡 = 1𝑛 ∫ ‖𝜕𝑘Ω𝜕𝑡𝑘 ‖1 𝑘⁄ 𝑑𝑡     𝑓𝑜𝑟 𝑖𝑧2
𝑧1

𝑡𝑖+1
𝑡𝑖 = 0,1,2, … , 𝑛 − 1. 
 

The 𝑡1, 𝑡2, … , 𝑡𝑛−1 values can be found by solving 

the above equation by using the Newton-Raphson method. 

 

5. RESULTS AND DISCUSSIONS 

We have considered various forms of fourth order 

BVP, and the maximum absolute errors have been 

computed accordingly in order to test the applicability of 

the proposed method. Initially, mesh points are chosen in 

such a way that we have equal subintervals with step 

length ℎ = (𝑧1 − 𝑧2)/𝑛 , where [𝑧1, 𝑧2] is the space 

variable (working) domain and this domain is divided into 𝑛 sub-intervals. On applying EDEP, the existing mesh 

points were re-distributed to reduce the maximum absolute 

error in each working subinterval of the domain. 

 

Example 1. Consider the following BVP  

  𝑧(4) + 4𝑧 = 1,−1 < 𝑡 < 1 

 

along with the prescribed boundary conditions 

 z(−1) = 0, z(1) = 0, z′(−1)= Sinh(2) − Sin(2)4(Cosh(2) + Cos(2)) , z′(1)= Sin(2) − Sinh(2)4(Cosh(2) + Cos(2)). 
 

The exact solution of the BVP is 𝑧(t)= 0.25 [1 − 2(Sinh(1)Sin(1)Sinh(x) Sin(x) + Cosh(1)Cos(1)Cosh(x)Cos(x)Cos(2) + Cosh(2) )]. 
 

For solving the above linear BVP using our 

method, we have used 10 subintervals for dividing the 

working domain[−1,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-1. 

  

Table-1. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

9.271502× 10−5 

6.490052× 10−7 

 

Example 2. Consider the following BVP  z(4) + tz = −(8 + 7t + t3)et,    0 < t < 1 

 

along with the prescribed boundary conditions 

 z(0) = 0, z(1) = 0, z′(0) = 1, z′(1) = −e. 
 

The exact solution of the BVP is 

 z(t) = t(1 − t)et. 
 

For solving the above linear BVP using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-2. 

 

Table-2. Maximum absolute error comparison for 

pre and post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

5.131960× 10−5 

4.978001× 10−7 

 

Example 3. Consider the following BVP 

 z(4) − 3601z′′ + 3600z = −1 + 1800t2, 0 < t < 1 

 

along with the prescribed boundary conditions 

 z(0) = 1, z(1) = 1.5 + Sinh(1), z′(0) − z(0)= 0, z′(1) − z(1)= −0.5 + Cosh(1) − Sinh(1). 
 

The exact solution of the BVP is 

 𝑧(𝑡) = 1 + 0.5 𝑡2 + 𝑆𝑖𝑛ℎ(𝑡). 
 

For solving the above linear BVP using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-3. 

 

Table-3. Maximum absolute error comparison for  

pre and post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

9.775162× 10−6 

3.871918× 10−7 

 

Example 4. Consider the following BVP   𝑧(4) − 𝑧 = −4(2𝑡𝐶𝑜𝑠(𝑡) + 3𝑆𝑖𝑛(𝑡)),   0 < 𝑡 < 1 

along with the prescribed boundary conditions 

 z(0) = 0, z(1) = 0, z′′(0) = 0, z′′(1) = 4Cos(1) + 2Sin(1). 
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The exact solution of the BVP is 

 𝑧(𝑡) =  (𝑡2 − 1)𝑆𝑖𝑛(𝑡). 
 

For solving the above linear BVP using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-4. 

 

Table-4. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

1.120567× 10−5 

8.068085× 10−8 

 

Example 5. Consider the following non-linear BVP 

  z(4) = z2 − t10 + 4t9 − 4t8 − 4t7 + 8t6 − 4t4 + 120t− 48, 0 < t < 1 

 

along with the prescribed boundary conditions 

 𝑧(0) = 0, 𝑧(1) = 1, 𝑧′(0) = 0, 𝑧′(1) = 1. 
 

The exact solution of the BVP is 

 z(t) = t5 − 2t4 + 2t2. 
 

To solve the above nonlinear BVP, firstly it is 

converted into a sequence of linear BVPs by using the 

quasilinearization technique [24] as 

 z(n+1)(4) − [2z(n)]z(n+1)= −t10 + 4t9 − 4t8 − 4t7 + 8t6 − 4t4+ 120t − 48 − [z(n)]2, n = 0,1,2, … 

 

along with the boundary conditions 

 z(n+1)(0) = 0, z(n+1)(1) = 1, z(n+1)′ (0) = 0,z(n+1)′ (1) = 1. 
Here 𝑧(𝑛+1) is the (𝑛 + 1)𝑡ℎ approximation for 𝑧.  

For solving the above sequence of linear BVPs using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-5. 

 

Table-5. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

6.872416× 10−5 

1.855552× 10−7 

Example 6. Consider the following non-linear BVP 

  𝑧(4) = 𝑆𝑖𝑛(𝑡) + 𝑆𝑖𝑛2(𝑡) − [𝑧′′]2,   0 < 𝑡 < 1 

 

along with the prescribed boundary conditions 

 𝑧(0) = 0, 𝑧(1) = 𝑆𝑖𝑛(1), 𝑧′(0) = 1, 𝑧′(1) = 𝐶𝑜𝑠(1). 
 

The exact solution of the BVP is 

 𝑧(𝑡) = 𝑆𝑖𝑛(𝑡). 
 

To solve the above nonlinear BVP, firstly it is 

converted into a sequence of linear BVPs by using the 

quasilinearization technique [24] as 

 z(n+1)(4) + [2z(n)′′ ]z(n+1)′′ = Sin(t) + Sin2(t) + [z(n)′′ ]2, n= 0,1,2, … 

 

along with the boundary conditions 

 z(n+1)(0) = 0, z(n+1)(1) = Sin(1), z(n+1)′ (0)= 1, z(n+1)′ (1) = Cos(1). 
 

Here 𝑧(𝑛+1) is the (𝑛 + 1)𝑡ℎ approximation for 𝑧. 

For solving the above sequence of linear BVPs using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-6. 

 

Table-6. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

7.218122× 10−5 

7.073760× 10−7 

 

Example 7. Consider the following non-linear BVP 

   𝑧(4) − 6𝑒−4𝑧 = − 12(1 + 𝑡)4 , 0 < 𝑡 < 1 

 

along with the prescribed boundary conditions 

 𝑧(0) = 0, 𝑧(1) = 𝑙𝑛(2), 𝑧′(0) = 1, 𝑧′(1) = 0.5. 
 

The exact solution of the BVP is 𝑧(𝑡) = 𝑙𝑛(1 + 𝑡). 
 

To solve the above nonlinear BVP, firstly it is 

converted into a sequence of linear BVPs by using the 

quasilinearization technique [24]: 
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z(n+1)(4) + [24e−4z(n)]z(n+1)= − 12(1 + t)4 + e−4z(n)[6 + 24z(n)],n = 0,1,2, … 

 

along with the boundary conditions 

 𝑧(𝑛+1)(0) = 0, 𝑧(𝑛+1)(1) = 𝑙𝑛(2), 𝑧(𝑛+1)′ (0) = 1, 𝑧(𝑛+1)′ (1)= 0.5. 
 

Here 𝑧(𝑛+1) is the (𝑛 + 1)𝑡ℎ approximation for 𝑧. 

For solving the above sequence of linear BVPs using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-7. 

 

Table-7. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

6.124377× 10−5 

3.552139× 10−7 

 

Example 8. Consider the following non-linear BVP 

  z(4) + t21 + z2 = −72(1 − 5t + 5t2) + t21 + (t − t2)6 ,   0< 𝑡 < 1 

 

along with the prescribed boundary conditions 

 𝑧(0) = 0, 𝑧(1) = 0, 𝑧′(0) = 0, 𝑧′(1) = 0. 
 

The exact solution of the BVP is 

 𝑧(𝑡) = 𝑡3(1 − 𝑡)3. 
 

To solve the above nonlinear BVP, firstly it is 

converted into a sequence of linear BVPs by using the 

quasilinearization technique [24] as 
 z(n+1)(4) − 2t2z(n)(1 + [z(n)]2)2 z(n+1)= −72(1 − 5t + 5t2) + t21 + (t − t2)6− 2t2[z(n)]2(1 + [z(n)]2)2 − t21 + [z(n)]2 ,n = 0,1,2,… 

along with the boundary conditions 

 z(n+1)(0) = 0, z(n+1)(1) = 0, z(n+1)′ (0) = 0,z(n+1)′ (1) = 0. 
 

Here 𝑧(𝑛+1) is the (𝑛 + 1)𝑡ℎ approximation for 𝑧. 

For solving the above sequence of linear BVPs using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-8. 

 

Table-8. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

9.820797× 10−7 

4.774332× 10−9 
 

Example 9. Consider the following non-linear BVP 

  z(4) + z2 = −8tCos(t) − 13Sin(t) + t2Sin(t)+ (t2 − 1)2Sin2(t), 0 < t < 1 

 

along with the prescribed boundary conditions 

 z(0) = 0, z(1) = 0, z′′(0) = 0, z′′(1)= 2Sin(1) + 4Cos(1). 
 

The exact solution of the BVP is 

 z(t) = (t2 − 1)Sin(t). 
 

To solve the above nonlinear BVP, firstly it is 

converted into a sequence of linear BVPs by using the 

quasilinearization technique [24] as 

 z(n+1)(4) + [2z(n)]z(n+1)= [z(n)]2 − 8tCos(t) − 13Sin(t)+ t2Sin(t) + (t2 − 1)2Sin2(t),n = 0,1,2, … 

 

along with the boundary conditions 

 z(n+1)(0) = 0, z(n+1)(1) = 0, z(n+1)′′ (0) = 0, z(n+1)′′ (1)= 2Sin(1) + 4Cos(1). 
 

Here 𝑧(𝑛+1) is the (𝑛 + 1)𝑡ℎ approximation for 𝑧. 

For solving the above sequence of linear BVPs using our 

method, we have used 10 subintervals for dividing the 

working domain[0,1]. The obtained maximum absolute 

errors for this problem without and with applying EDEP 

are given in Table-9. 

 

Table-9. Maximum absolute error comparison for pre and 

post application of EDEP. 
 

 
Before 

applying EDEP 

After applying 

EDEP 

Maximum 

Absolute Error 

9.506941× 10−6 

6.654859× 10−8 
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CONCLUSIONS 

The motivation for conducting this study lies in 

numerically solving fourth order BVPs arising in 

numerous fields of science and engineering such as beam 

theory, fluid mechanics, diffusion reaction equations, 

biomechanics, model reaction behaviour of catalytic 

surfaces, electrochemical process, etc. In this article, we 

have developed a numerical method to solve a fourth order 

BVP using the Galerkin method with cubic B-splines as 

basis functions. The Cubic B-splines are redefined into a 

new set of basis functions that vanish on the boundary 

where the Dirichlet boundary conditions are specified. The 

upper bound of the error was reduced with the help of 

EDEP. The accuracy and strength of the proposed method 

were tested based on the application of our method on four 

linear and five non-linear fourth order BVPs with various 

boundary conditions, and they were found to be quite 

satisfactory. The reduction in the maximum absolute error 

values for the concerned problems using EDEP provides a 

strong foundation for our method. 
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