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ABSTRACT 

Identification and classification of skin diseases are two critical challenges faced in diagnosing and treating 

patients suffering from them. Deep learning models have been created to best identify and classify skin problems to detect 

and identify them correctly and effectively. This paper proposes a comprehensive framework for accurate skin cancer 

prediction, classification, and melanoma surgical lesion extraction. Primarily, a comprehensive extraction method 

leveraging the unique approach of DenseNet201 and the Local Interpretable Model-Agnostic Explanation offers accurate 

insight into model decision making and prediction. Secondly, the model has a mid-extraction phase that utilizes advanced 

convolutional neural network levels to detect the boundaries of melanoma lesions correctly. The framework results in 

terms of IOU, accuracy, precision, recall, and other metrics compared to existing models like FPN, MAN, and U-Net. The 

framework presented in our model is smart, easy to use, and can provide functional and accurate information, which means 

it can be used in clinical practice. 
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1. INTRODUCTION 

Millions of people across the globe suffer from 

skin diseases, making their diagnosis and treatment two 

most complicated issues. The rapid development of deep 

learning and CNNs has contributed to the emergence and 

further improvement of artificial systems capable of 

identifying and classifying various skin diseases [1]. 

Researchers and practices intend to change the established 

situation in dermatology and transform the approach to 

defining cases, making the most proactive assistance 

possible [2]. The development of deep learning models has 

revolutionized the diagnosis of skin disease. Previously, 

most diagnostics involved a certain degree of subjectivity 

and visual inspection by dermatologists using 

photographs. For comparison, the diagnostic performance 

of deep learning models is much more reliable due to their 

ability to analyze significantly more data than any human 

experts. Thousands of images and clinical notes enable the 

identification of the most subtle and hard-to-understand 

correlates via labeled data. Thus, they can identify various 

skin conditions in distinction to the accuracy levels of 

medical experts or even outperform them [3]. 

These deep learning technologies simplify the 

diagnostic process itself, which means that many different 

skin conditions can be detected faster and more accurately. 

Deep learning models analyze images of dermatological 

conditions and related clinical data, and the results may be 

limited or specific rights [4]. In areas where there are few 

specialists or dermatologists or their facilities, automatic 

systems can be used for the initial diagnosis and thus not 

to delay, but to prevent the disease in due time. Despite its 

promising use cases of deep learning-based models, 

various constraints make it difficult to implement and 

enhance efficiency in detection and classification. The 

limitations of such applications are primarily due to 

insufficient and unvarying datasets. Furthermore, even 

many training sets are limited, leading to inconsistent 

findings in various demographic populations. Despite 

advancements, the performance of algorithm development 

and evaluation is occasionally stymied by a shortage of 

annotated dermatologic imagery [5]. Furthermore, the 

imbalance and skewness of skin disease data are a major 

obstacle. Imbalance data with a skewness that is some 

disease classes represented far more than others could 

disrupt model generalization and result in poor 

classification of smaller classes. As a result, reducing the 

impact of skewed class distribution through meticulous 

data preprocessing and specialized loss functions is 

mandatory [6]. A serious issue with deep learning for skin 

conditions is the generalization of models to conditions 

not seen in the training set, which are often too rare for a 

model specific to a large subset of diseases to develop 

robust diagnostics. Most approaches alleviate this 

limitation with transfer learning, although it still is a topic 

of active research. Incorporating the use of explainable AI 

into the detection and classification of skin diseases in 

deep learning models provides a potential approach to 

mitigating numerous underlying long-term problems. The 

explainable AI approaches offer critical bases on which to 

understand how the models make their decisions and 

contribute to the fortification of the models’ 
interpretability and trust from medical practitioners and 

patients. Since the stakeholder can track the essential 

occurrences of predictions made by the model, there exists 

an opportunity to focus on the classification results. 

Explainable AI techniques are critical for enhancing the 

interpretability of deep learning models. Saliency maps, 

gradient-based attribution methods, occlusion analysis, 

and other approaches facilitate the visualization of 

significant features in an image or signal that contribute to 
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the model’s classification [7]. A further critical advantage 

for practitioners is that explainable AI helps constraints 

associated with model generalization and capacity that 

model focus cannot adequately address. Through a review 

of decision boundaries and feature representations, it is 

straightforward to determine where the model has 

difficulty generalizing between various skin conditions. 

On the other hand, accurate delineation of resection 

boundaries in melanoma cases has critical implications for 

clinical practice. Deep-learning-based segmentation offers 

exact lesion margins delineation allowing dermatologists 

and oncologists to perform accurate disease diagnosis and 

choose recommended treatment routines. It enables 

quantitative lesion size and growth rate measurement and 

monitoring of disease development and response to 

treatment over time. Furthermore, accurate identification 

of melanoma boundaries can help to design effective 

treatment plans such as surgical resection mark 

identification, especially on wide excisions, or radiation 

therapy target delineation ultimately improving therapeutic 

efficiency and cutting recurrence risk [8]. In this paper, we 

also discuss the use of deep learning-based image 

segmentation to achieve an accurate delineation of 

melanoma boundaries to improve diagnosis and treatment 

planning. The organization of the paper is as follows: The 

section-II describes the Literature survey, and the 

proposed methodology is explained in section-III. The 

simulation results are discussed in section-IV. 

 

2. LITERATURE 

To improve the classification accuracy of skin 

lesions, Natasha Nigar et al [9], presented a new 

classification system for skin lesions based on explainable 

Artificial Intelligence. It was introduced to help 

dermatologists make better and faster diagnoses, 

especially in the early stages of skin cancer. The proposed 

XAI model was validated using the International Skin 

Imaging Collaboration 2019 dataset. The results revealed 

that the developed model correctly classified eight types of 

skin lesions, such as dermatofibroma, squamous cell 

carcinoma, benign keratosis, melanocytic nevus, vascular 

lesion, actinic keratosis, basal cell carcinoma, and 

melanoma, with classification accuracy, precision, recall, 

and F1 score of 94.47%, 93.57%, 94.01%, and 94.45%, 

respectively. Additionally, the predictions were fed into 

the local interpretable model-agnostic explanations 

framework to elicit human-readable visual explanations 

that were aligned with prior expectations and adhered to 

the principles of general explanation best practices. The 

developed classification system was expected to be more 

useful in clinical settings. 

Naveed Ahmad et al [10] proposed a new 

framework for skin lesion recognition using data 

augmentation, deep learning, and Explainable Artificial 

Intelligence. The dataset size was initially expanded using 

data augmentation in this work. The authors also utilized 

two pretrained deep learning models, Xception, and 

ShuffleNet. Finally, they fine-tuned and trained the models 

using deep transfer learning by using the global average 

pooling layer for deep feature extraction. They discovered 

that essential information was missing and decided to 

combine the two models. Although post-fusion 

computational time has increased, the enhanced Butterfly 

Optimization Algorithm selects only the best features to 

improve classification using machine learning classifiers. 

Additionally, the authors utilized GradCAM-based 

visualization to pinpoint essential regions in the images. 

This study validated the framework using ISIC2018 and 

HAM10000 datasets, thereby obtaining an increased 

accuracy of 99.35%. And 91.5% respectively. This work 

demonstrates that better accuracy can be achieved over the 

existing approach while taking less computational time. 

The research work [11] trained and validated a ResNet18 

model, the final result of the CVDL process. The Grad-

CAM model explainability technique was applied to 

enable dermatologists to better understand the model’s 
predictions. As a result, the classification model accurately 

showed 96%. The paper reviewed scientific research on 

CVDL and the explainability of deep learning with 

structural photos of skin disease to supplement the 

grounding evidence. Another aspect of the CVDL process, 

the discrepancy between the dermatologists’ expected 

explainability and the available methods was provided. 

Further ways of solving this problem were suggested. In 

the research work [12], modifications have been proposed 

to the pre-trained MobileNetV2 and DenseNet201 deep 

learning models to help recognize skin cancer more 

efficiently. And the pre-trained MobileNetV2 and 

DenseNet201 Convolutional layers’ models three more 

convolutional layers have been incorporated at the end of 

them. The comparative study determination foretold that 

the modified model overtook the existing pre-trained 

MobileNetV2 and DenseNet201 models. The proposed 

one seems to be more advantageous, as it recognizes both 

the benign and the malign class. According to the 

outcomes gathered, the Modified DenseNet201 model 

obtains an accuracy of 95.50% and is very close to being 

the best when equated to the antecedent works. Finally, the 

Modified DenseNet201 yields a sensitivity of 93.96% and 

a high specificity of 97.03%. 

Khalid M. Hosny et al [13] developed a deep 

innate learning strategy, shown to be useful in detecting 

seven varieties of skin lesions. To verify the efficacy, 

several explanation strategies were employed. Explainable 

AI was used to clarify what contributes to the decision to 

create locally and globally, and visual aids were offered to 

boost physicians’ trust. The proposed approach was 

subsequently assessed on the challenging HAM10000 

dataset to assess its impact. With the help of the authors’ 
easily realized stage-oriented X-AI architecture, 

physicians might better comprehend the internal operation 

of a black-box AI model. Alternatively, they may have 

confidence in it after it has utilized a reasonable answer. 

Xinrong Lu et al [14], proposed a novel model which is 

built on top of the improved XceptionNet with the swish 

activation function and depthwise separable convolutions 

and demonstrated improved classification accuracy in 

comparison with the original Xception and other models. 

The simulated performance of the proposed method was 

compared to that of other state-of-the-art models for skin 
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cancer diagnosis. The results revealed its superior 

accuracy when compared to relative methods. Ghadah 

Alwakid et al [15], proposed DL as a tool to more 

accurately obtain the lesion zone. First, the image was 

enhanced, which raised its quality due to the Enhanced 

Super-Resolution Generative Adversarial Networks 

method. Then, ROI from the general area was isolated via 

segmentation. Further, the data augmenting solution was 

utilized due to the data’s uneven representation Several 

CNNS and modified networks like ResNet-50 were 

applied to analyze the image and classify the skin lesion. 

The study used different-skinned people due to an unequal 

sample, which included seven types of skin cancer 

observed. 

An automated Deep Learning framework was 

used in the research work [16], which relied on a CAD 

model called DLCAL-SLDC which is a computer-aided 

diagnosis with the class-attention layer. The main purpose 

of that model was to diagnose and categorize different 

types of skin cancers through dermoscopic images. Image 

preprocessing includes hair elimination using the dull 

razor method and noiselessness by the average median 

filter. A Tsallis entropy segmentation was used to isolate 

their lesion based on the dermoscopic image at this stage. 

Moreover, the DLCAL-based feature extractor was 

applied to the segmented lesions to extract features using a 

Capsule Network along with a Class Attention Layer and 

the Adagrad optimizer. The CAL layer in a CapsNet was 

created to learn discriminative class-specific features to 

capture class dependency and permit the CapsNet to be 

processed further. Eventually, the classification was done 

by the Swallow Swarm Optimization -Convolutional 

Sparse Autoencoder CSAE, better known as the SSO-

CSAE model. An ISIC benchmark dataset validated the 

proposed DLCAL-SLDC approach. 

Amina Bibi et al [17] presented a novel approach 

based on the integration of traditional and deep learning 

methods. The suggested framework is accompanied by 

two main tasks, specifically lesion segmentation and 

classification. In the case of the first task, the basis for 

contrast enhancement was the use of two filtering 

approaches, which after allowed applying a color 

transformation to differentiate changes in colors by pixels 

of the lesion area. Further, the optimal channel was 

chosen, and the lesion map was produced, which was, 

consequently, transformed into a binary map utilizing a 

threshold function. The process of lesion classification 

included the modification of two pre-trained CNN models 

and further training using the transfer learning approach. 

After the extraction of deep features using both networks, 

the merged features were derived through CCA. However, 

some redundant features were included in the fusion 

process, which, in turn, reduced the accuracy of 

classification. A novel approach of maximum entropy 

score-based selection was developed to eliminate 

unnecessary features. The extracted features were then fed 

into a cubic support vector machine.  

Mohamed Yacin Sikkandar et al [18] proposed a 

new classification model for skin lesion diagnosis based 

on segmentation using the integrated GrabCut algorithm 

and ANFC. This model included four stages: 

preprocessing, segmentation, feature extraction, and 

classification. First, the preprocessing was carried out 

using the Top hat filter and inpainting method. After that, 

the integrated GrabCut-based algorithm was used to 

segment the preprocessing image. Then the deep network-

based Inception model was implemented for extracting 

features. Finally, the ANFC system classified dermoscopic 

images into different classes. The proposed approach was 

tested on the benchmark International Skin Imaging 

Collaboration ISIC dataset, and the obtained results were 

measured in terms of accuracy, sensitivity, and specificity. 

The study showed that the proposed algorithm produced 

better results in the context of skin cancer identification 

and classification. To ensure the approach’s efficiency, it 

was widely compared with other approaches. 

 

3. PROPOSED MODEL 

The proposed model consists of three separate 

phases to advance skin cancer prediction, improve 

classification outcomes, and segmented melanoma lesions. 

As for phase one, skin cancer prediction is pursued via a 

novel CNN model. More specifically, the Modified 

DenseNet201 architecture is used to classify the disease. 

Although the stated architecture has been adjusted and 

changed specifically for skin lesion classification, it stands 

to be noted that it is still enhancing the model needed. 

Secondly, the classification outcomes generated by the 

Modified DenseNet201 architecture are improved in the 

enhancement phase. An alternative or equivalent 

explainable AI model is utilized to add more insights into 

the determination basis of the classification model, which 

enhances transparency and understandability on the side of 

clinicians and stakeholders. In this manner, the model 

boosts the trust and transparency of the classification 

outcomes using explainable AI tactics, such as visual 

explanations, and feature attributions, which promote 

more informed decision-making in medical scenarios. The 

proposed framework is shown in Figure-1. 

 

 
 

Figure-1. Proposed framework. 

 

Finally, in the third phase, the proposed model 

seeks to segment the melanoma lesions existing within the 

dermoscopic images. Using sophisticated image 

processing capabilities and deep learning methodologies, 

the model will accurately identify the melanoma lesion 

boundaries. This is important as the confirmed segment 

can be analyzed to determine the extent of the melanoma 

lesion, a factor that is critical when considering different 

treatment approaches. 
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a. Skin cancer prediction and classification 

In the proposed skin cancer prediction model, 

CNNs are used to extract hierarchical important features 

from the skin images. The proposed model consists of 

blocks, which are named “Block A”, with three main 

layers which are depicted in Figure-2. 

 

 
 

Figure-2. Block A. 

 

Conv2D layer is the layer that makes use of the 

set of convolutions that are used for the extraction of 

features out of the input images. The Conv2D layers scan 

the input images to detect important visuospatial patterns 

important for the identification of all the types of skin 

datasets. Dropout was performed on the output layer of the 

CNN combined with the fully connected connection used 

to avoid overfitting the CNN model. MaxPooling2D is 

used in reducing the spatial dimensions to retain the most 

important features. The proposed CNN model for skin 

cancer prediction is shown in Figure-3. 

 

 
 

Figure-3. Proposed CNN Architecture for skin  

cancer prediction. 

 

The architecture is made up of several Block A 

layers that enable the model to learn increasingly complex 

features from the data. Then, the data is flattened into a 

vector of dimension 1 which is passed through several 

fully connected dense layers. The dense layers are 

responsible for interpreting the most extracted features and 

making a conclusion regarding the possibility of skin 

cancer. The learning process of the model is facilitated by 

an Adam optimizer which aided in the updating of the 

model’s weights by ensuring swift learning and 

convergence. 

The model for the skin cancer classification task 

is based on a modified DenseNet201 architecture. 

DenseNet201 is a pretrained on a relatively large dataset 

with densely connected layers which ensures the effective 

reuse of features and the flow of gradients. This allows the 

model to successfully learn from limited amounts of data. 

The modified DensNet201 architecture is depicted in 

Figure-4. 

 

 
 

Figure-4. Proposed model Architecture for skin  

cancer Classification. 

 

Finally, after DenseNet201 learns multiple 

features, a Flatten Layer is utilized to convert the 2D 

feature maps into a 1D vector. After this, the vector is 

passed through a sequence of Dropout Layers and fully 

connected Dense Layers. Dropout Layers are used to avoid 

overfitting; this is done by setting a fraction of neuron 

outputs to zero during the training interval Dense Layers 

record complicated patterns and finally help to do 

classification. The SGD optimizer is used to modify the 

model’s parameters, which helps CNN to learn a high 

amount of data efficiently. 

 

b. Proposed explainable AI model 

The second phase of the concept focuses on using 

explainable Artificial Intelligence techniques to improve 

the obtained classification results based on training the 

Modified DenseNet201 architecture. Explainable AI is 

fundamental in ensuring that the machine learning models’ 
decisions are transparent and can be interpreted by 

clinicians. Explainable AI approaches attempt to elucidate 

the reasoning for the prediction provided by the classifier. 

Generating explanations intelligible to humans allows the 

clinician to understand why the classification decision was 

made and has to be made and to feel more confident and 

informed in the clinical practice. In this work LIME 

(Local Interpretable Model-Agnostic Explanations) 

technique is considered an Explainable AI. The steps 

involved in the LIME technique are shown in Figure-5. 

 

Conv 2D Layer 

Dropout Layer 

MaxPooling Layer 2D Layer 



                                VOL. 19, NO. 15, AUGUST 2024                                                                                                             ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1016 

 
 

Figure-5. LIME Technique. 

 

LIME is by far one of the most popular Explainable 

AI techniques, providing local interpretability for complex 

machine learning ML models, such as deep learning 

models. The main goal of LIME is to explain what 

predictions the black-box model makes in a way that is 

understandable to humans. Essentially, LIME works by 

creating explainable explanations of a specific instance or 

prediction by estimating the decision boundary of a black-

box model in the area surrounding that instance. 

 

▪ Instance perturbation: Instance perturbation refers 

to the generation of perturbed instances by modifying 

slightly selected instance’s feature values, but the 

label remains constant. A model’s decision is used to 

draw and sample the local neighborhood about which 

one wants the explanation. This involves simulating 

the local approximation of the black-box model near 

and about the selected instance. Generate variants of 

the input data with its ground truth labels intact. 

LIME aims to capture the decision boundary of the 

black-box model in the neighborhood of the instance 

being explained. This approach enables LIME to 

mimic how the black-box model would perform if 

provided with similar instances that vary slightly in 

their feature values. After the perturbed instances are 

obtained, and assuming a surrogate model, said 

instances are then materialized in the subsequent 

moves of the LIME. Instance perturbation allows 

LIME to achieve its aims of approximating the 

decision boundary of the black-box model by 

sampling the local neighborhood around the instance 

to be explained to generate human-intelligible 

rationales for individual predictions. 

▪ Model surrogate layer: The perturbed instances are 

next passed to the surrogate model which is usually a 

simpler and more interpretable model than the 

original black-box model. Surrogate models can be 

constructed using linear regression algorithms, 

decision trees, or even fancy shallow neural networks. 

They are trained to learn about the functionality of the 

black-box model in some locality around the chosen 

instance. After training a surrogate model on the 

perturbed instances, it can be leveraged to model the 

black-box model’s behavior around the point in 

question. Next, by inspecting the coefficients or 

feature importance of this surrogate model, one can 

also reveal the reasons behind their behavior on the 

black-box model’s output values. 

▪ Feature importance layer: The Feature Importance 

Layer of LIME is tasked with analyzing the 

coefficients or feature importance scores of the 

surrogate model developed in the Model Surrogate 

Layer. Therefore, the purpose of this layer is to 

ascertain the extent to which each feature contributes 

to the prediction done by the surrogate model 

regarding the instance in question. Obtained through 

the surrogate model, the feature importance scores can 

be utilized to determine the most important and least 

essential features towards the black-box model’s 

prediction. The features with higher importance 

scores are thought to influence the prediction, while 

those with lower scores are assumed to impact it less. 

The Feature Importance Layer is an essential part of 

the LIME method as it draws attention to the reasons 

behind the black-box model’s predictions. 

Understanding which features are key to predictions 

of an individual model can prove useful to analyze the 

decision-making procedure of complex machine 

learning models and build more trust in their 

predictions. 

▪ Local explanation layer: Local Explanation Layer is 

the key component that generates local explanations 

for single predictions of B-level black-box machine-

learning systems. Its purpose is to shed light on why a 

specific prediction was made, studying local 

behaviour around the instance of interest. Given that 

the surrogate model is trained with the perturbed 

instances and the feature importance scores have been 

obtained, the Local Explanation Layer then uses these 

to explain the prediction of the black-box model. The 

Local Explanation Layer is so critical in the LIME 

methodology since it helps explain the individual 

predictions of a black-box machine learning model. 

As it explains the active factors driving the machine 

learning model prediction, the user learns the base 

behind the prediction and builds more trust in the 

model. 

The architecture of LIME is quite flexible. It can 

be used in conjunction with different types of machine 

learning models and data domains. Therefore, LIME can 

easily allow for the provision of LIEs which will help 

Instance Perturbation 

Model Explanation 

Feature Importance 

Local Explanation 
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users understand how complex models make decisions, 

increase their faith in the validity of the predictions, and 

detect and correct potential biases or mistakes. 

 

c. Proposed segmentation model 

Since melanoma, a type of skin cancer is 

characterized by abnormal borders and an uneven 

distribution of color, accurately segmenting it and 

determining its extent is crucial to diagnosing and 

planning treatment for the patient. In this Phase, the 

proposed CNN model concludes its representations to 

demarcate the edges of melanoma lesions identified in 

dermoscopic images. Consequentially, the model conducts 

feature extraction and spatial investigations to determine 

areas on the dermoscopic image within which melanoma 

may be growing. The proposed CNN model for melanoma 

segmentation is shown in Figure-6. 

 

 
 

Figure-6. Proposed CNN Architecture. 

 

Conv2D: The Conv2D layer is the basic building 

block in convolutional neural networks which are used to 

capture complex patterns and features from the input 

images. The Conv2D layer functions like a sliding window 

and slides a kernel or a filter over the input image domain 

with element-wise multiplication and sum. These 

operations help to retrieve different features from various 

spatial positions in the image, such as edges, textures, or 

patterns. By adjusting and learning the filter weights 

during the training phase, the network learns to identify 

more complicated representations of the input data. Many 

parameters of the Conv2D layer function as 

hyperparameters that define its behavior and the network 

architecture. The size of the filters defines the spatial 

extent of features blended. The quantity of filters defines 

the depth of the feature maps produced. Other parameters, 

including padding and strides, also define the output 

dimensions of the feature maps, ultimately determining the 

receptive field of the network and its computational 

efficiency. Artificial neural networks excel at learning 

representations and features in a hierarchical manner. 

Consequently, the Conv2D layer forms the basis of many 

CNN architectures because it allows them to achieve the 

top results on various computer vision applications, 

including image classification, object detection, and 

semantic segmentation. 

Batch normalization layer: Batch 

Normalization layer is used to stabilize and speed up the 

Conv2D 
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training. Specifically, BatchNormalization normalizes the 

activations of each layer across mini batches during 

training. This prevents the problem of internal covariate 

shift, where the distribution of activations within a layer 

changes during training significantly. If not prevented, 

internal covariate shift makes it difficult for the network to 

converge and causes the use of lower learning rates to 

prevent the model from diverging. Nonetheless, 

BatchNormalization addresses internal covariate shift by 

allowing the activations to be within a normalized range, 

hence a smooth and faster training. Furthermore, 

BatchNormalization serves as a regularizer which means it 

can eliminate the need for other techniques such as 

dropout or weight decay. Normalizing activations 

increases the stability of the training process by 

introducing a form of noise that helps to prevent 

overfitting and improves the generalization ability of 

models. Moreover, BatchNormalization makes it possible 

to use higher learning rates which further increases the 

convergence speed, reducing the training time required for 

optimal performance. Thus, the integration of 

BatchNormalization layers into neural network structures 

is now ubiquitous due to technological advancements and 

has provided a significant boost to the stability, efficiency, 

and performance of deep learning in almost any domain 

and task. 

Activation layer: This layer is responsible for 

bringing non-linearity to the network’s computations. The 

activation layer applies element-wise activation functions 

to the output of the previous layer, serving complex 

dependencies and assisting the network in learning and 

representing the complex patterns within the data. One of 

the most frequently used activation functions is the 

Rectified Linear Unit, or ReLU, which turns negative 

values to zero and positive values to themselves. ReLU is 

the simplest of activation functions, and its computation is 

easy, while during training, it solves the vanishing 

gradient problem; therefore, being broadly used. 

MaxPooling2D layer: To effectively reduce the 

spatial dimensions of feature maps and computation, the 

MaxPooling2D layer down samples feature maps while 

ensuring that the most salient information is retained. The 

input is partitioned into non-overlapping regions, and the 

maximum value in all these regions is output. This enables 

to specially reduce the computation to avoid overfitting. 

However, it also has the effect of translation invariance 

that allows the model to extract the most discriminative 

features while ignoring replaying the irrelevant features. 

MaxPooling2D also enables increased computational 

efficiency by downsampling. This makes CNN 

architectures scalable to larger data sets and deeper 

architectures since the number of parameters to train is 

significantly reduced. The max pooling also helps the 

CNN to capture hierarchical statistics by aggregating 

higher level local patterns in the convoluted representation 

of the input data. 

Dropout Layer: The main purpose of the 

Dropout layer is to reduce the propensity to overfit by 

dropping out or excluding a certain fraction of input units 

from the training phase. However, since for each new 

input the Dropout edge uses a different random mask of 

units that are removed, it acts as an almost ensemble 

averaging of different neural architectures. Thus, when 

some of the units are excluded, unity develops, and the 

whole is enhanced, preventing units from co-adapting to 

do this too great. It significantly diminishes harmful 

connections between neurons and especially complicates 

training, mostly reducing the capabilities of the network 

by forcing the training to converge more achieved, but up 

to the end of the training, more than simply throwing 

everything into the mixer and stopping. Also, Dropout 

deals with learning to generalize by covering the eternal 

dependence between one input and other features provided 

the proper feature set, but the network learns and hence 

utilizes the other learned features more easily, decreasing 

dependency. 

Dense layer: The Dense layer permits high-level 

abstraction and complex decision-making. Every neuron 

within a dense layer is attached to each neuron in the 

preceding and succeeding layers, ensuring the flow of 

information across the entire network. By learning weights 

linked with each connection, the dense layer conducts a 

series of transformations that transform the input data into 

a higher-dimensional feature space, simplifying the 

extraction of complicated patterns and correlations. Dense 

layers are often used in the last set of a neural network to 

allow the network to predict or classify utilising the 

learned features drawn from the input data. Furthermore, 

as a result of achieving non-linear relationships within 

features, the Dense layer can be adapted to solve various 

problems across several domains, including image 

classification, natural speech language comprehension, 

and regression analysis. 

Conv2DTranspose layer: The 

Conv2DTranspose layer is commonly known as a 

deconvolutional layer, and it is instrumental in several 

tasks such as image segmentation, generative modeling, 

and image super-resolution. The typical Conv2D layer 

downsamples the input through a series of convolutional 

operations, and Conv2DTranspose upsamples the input by 

increasing the spatial dimensions of the input feature 

maps. The expansion is obtained by using a layer of 

learnable parameters, expressed as filters, which 

convolved at the input to rebuild the original spatial 

resolution. Since such filters are learned during 

backpropagation, the Conv2DTranspose layer can recover 

fine-grained details lost during the downsampling phases 

above thus allowing the network to generate higher-

resolution outputs. This same property of the 

Conv2DTranspose layer enables the creation of novel 

images with generative models through the transformation 

of low-dimensional feature vectors into high-dimensional 

ones. This mechanism gives tools for the generation of 

realistic and diverse samples in generative tasks like image 

generation or image-to-image translation. 

UpSampling2D layer: UpSampling2D layer, 

which enables expanding the feature maps into higher 

resolutions. This is done by replicating the rows and 

columns of the input feature maps, hence increasing the 

size of the spatial dimension of the data, allowing more 
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fine-grained spatial patterns and details to be retained and 

passed through the network. Unlike MaxPooling or 

Conv2DTranspose layers that are trained to perform 

downsampling and upsampling, UpSampling2D simply 

replicates the input data and does not have any parameters; 

therefore it is computationally efficient and easy to use. 

UpSampling2D is often combined with the 

Conv2DTranspose layers to upsample the spatial 

dimension to be of the same size as the feature maps 

before applying CNNs, allowing the network to capture 

spatial patterns and relationships. Aside from that, 

UpSampling2D also helps to increase feature map 

resolution which enhances the network’s performance in 

tasks such as image segmentation, image generation, and 

high-resolution pictures. 

Reshape layer: The role of the Reshape layer is 

to change the shapes of the tensors to match a specific 

given formulation or dimension. Reshaping the input 

tensor into a desired form implies that it will be used to 

operate with another layer within the same network, which 

ensures the transmission of information and computation. 

Such a layer is suitable in cases where the current shape of 

an outlay must equal that of an input layer, especially 

during the last phase of the network when the output is 

being prepared for classification or regression. Moreover, 

the Reshape layer allows for changing the shape of the 

dimensions of a tensor and building decision trees based 

on the dimensions. This offers a flexible design of the 

model and eases the integration of different architectural 

forms. Instead, the shape of the data is determined and 

redefined in the convolution and pooling chapters, making 

for its efficient and effective processing in the workflow of 

specific tasks and applications. 

 

4. SIMULATION RESULTS 

This section describes the simulation results of 

the proposed model. The fundamental element of the 

proposed model is the explainable AI approaches using the 

LIME technique which is incorporated to clarify 

classification decisions. The local surrogate models 

identify the most significant features of each prediction as 

described above, which helps explain the model’s 
predictive rationale. This level of detail allows clinicians 

to produce more educated judgments; there is a stronger 

alignment with the model’s predictions and boosting 

confidence, supporting expert systems to apply within a 

clinical scenario. The classification results obtained from 

the DenseNet201 model are considered as input for the 

LIME technique. From the classification results melanoma 

images were taken and each image has been transformed 

into a grid of pixels. The CNN model is used to interpret 

these images. The sample images considered as input are 

depicted in Figure-7. 

 

  
Image-1 Image-2 

  
Image-3 Image-4 

 

Figure-7. Sample input images. 
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The first step in the LIME technique consists of 

choosing an image to explain. These perturbed samples are 

intended to give an approximation of how the model will 

act in the vicinity of the given instance: slight variations 

are applied to its input features while preserving the 

original label. For an image, the input features may be 

pixel values perturbed by noise or color intensities. 

 

 
 

(a) Heatmap Image (b) Segmented RoI Image 
 

Figure-8. Heatmap and segmented RoI of input image. 

 

Figure-8(a) represents the heatmap of the input 

image, which displays the data across different colors on 

the grid with the unique value of the data points. This plot 

easily identifies the patterns or gradients for the data 

points. This plot would be applicable for LIME 

visualization on the data points for the feature importance 

and localized explanation for the image-based data. LIME 

works by perturbing the input image to come up with an 

array of perturbations, which can be viewed as differently 

colored or gradient regions of the plot. In other words, the 

perturbations represent different areas of interest in the 

image. From the newly formed image, namely the 

perturbed instances, predictions are obtained through the 

model to indicate the areas where the predictions change 

drastically. Figure-8(b) is a visualization of a segmented 

region of interest on an input image. The yellow line in 

Figure-8(b) that denotes the segmented lines giving the 

boundaries between different regions. The dark field at the 

center may be the lesion or the area of interest, while the 

rest of the regions may imply portions of the analyzed 

object that are less of a factor for the model’s decision. 

Afterward, these perturbed samples are used as 

input for the original black-box model, resulting in a 

prediction for each of them. As each prediction was made 

for the perturbed sample, the difference in the input 

features can be mapped to see the difference in the 

model’s prediction. Subsequently, the predictions can be 

collected, and the point of interest can be changed to focus 

on explaining the feature's importance. This explanation is 

done by finding a simpler model, like a linear model or 

decision tree. The selected model is called a surrogate 

model and is trained using the perturbed samples and 

resulting output to mimic how the black-box model 

behaves in the neighborhood of the picked instance. The 

prediction result of the LIME technique is shown in 

Figure-9. 

 

 
 

Figure-9. Prediction output of LIME technique. 
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Figure-9 shows a visual representation of image 

segmentation and the feature importance of detection. The 

leftmost is the binary mask that locates the region of 

interest, followed by the original image with that region 

highlighted for contextualization. The rightmost image is 

the heatmap, which depicts the importance 

scores/confidence against the entire image giving a deeper 

concept of which areas in the image are important for the 

model’s decision. After completion of the Explainable AI 

LIME technique, the melanoma images are accurately 

segmented by using the proposed CNN model. By the 

proposed CNN-based model, segmentation capabilities, 

especially proper boundaries of melanoma lesions, were 

tested. With the help of Conv2DTranspose and 

UpSampling2D layers, the model detected abnormal 

borders and color distribution of melanoma. Consequently, 

segmented images yielded a more thorough and 

informative diagnosis and ensured accurate treatment 

options, and thus, its usability in clinical applications was 

revealed. The input images along with mask images are 

augmented by rotating and flipping. The corresponding 

augmented images are depicted in Figure-10. 

 

 
 

Figure-10. Augmented input and mask images. 

 

The training loss plot depicted in Figure-11(a), 

visualizes how the loss value of the model behaves on 

each epoch or training step. The commonly-used metric is 

a loss, which is a quantification of a model’s prediction 

alignment with the correct labels. Thus, low loss is an 

indicator of a better model. The x-axis, in turn, captures 

the epochs or iterations while the y-axis visualizes the loss 

values.  

 

 
                                                        (a)                                                                    (b) 
 

Figure-11. Training loss and accuracy plots. 
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The Training accuracy plot shown in Figure-

11(b) indicates how the model’s accuracy develops 

through the training epochs. The training accuracy is 

compared to the validation accuracy to understand how the 

model performs on unseen data.  

 

 
                                                     (a)                                                                        (b) 
 

Figure-12. Validation loss and accuracy plots. 

 

The Validation accuracy plot shown in Figure-

12(b) indicates how the model’s accuracy after performing 

the validation. After training the segmented results are 

shown in Figure-12. 

 

 

 

 

 
(a) (b) (c) 

 

Figure-13. Segmented results of proposed CNN model. 
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Figure-13 represents the segmented results of the 

proposed CNN model. The Figure-13(a) is the original 

image of melanoma and Figure-13(b) is the binary mask/ 

ground truth image of the original image. The Figure-13(c) 

represents the segmented/ predicted output of the proposed 

CNN segmentation model. In the final stage, the 

segmented outputs are enhanced and correlated with the 

ground truth images. The corresponding enhancing images 

are shown in Figure-14.  

 

 
 

Figure-14. Enhanced segmented results. 

 

Table-1. Performance metrics of the proposed model. 
 

Parameter Train Set Test Set 

IOU 97.20 94.32 

Dice Coef 85.50 81.39 

Precision 96.55 91.05 

Recall 97.31 92.47 

Loss 11.09 17.04 

Accuracy 98.06 94.90 

 

By applying enhancement techniques to the 

segmented regions, their visibility and clarity are 

improved. The techniques may involve sharpening the 

boundaries, improving contrast, or removing noise to 

make the features more distinct. These enhanced processes 

are undertaken to produce images that are clearer and 

interpretable and can be analyzed more easily and 

accurately. The enhanced images in visual form are 

presented in Figure 14, which makes readers and 

researchers judge the segmentation and enhancement 

quality. The enhanced image is compared with the ground 

truth, allowing a visual assessment of the efficiency and 

accuracy of the image analysis. The performance metrics 

of the proposed model are reported in Table-1. 

Table-1 illustrates the performance of the 

proposed model by presenting several metrics for both the 

training set and the test set. The IOU values for the 

training set and test set are 97.20% and 94.32%, 

respectively. Based on this metric, the degree of overlap 

between the predicted and actual segments is indicated. 

The IOU recognition signifies that the model achieves 

higher accuracy in predicting the segment boundary for 

both datasets. The Dice Coefficient values with 

percentages of 85.50% and 81.39% for the training set and 

test set affirm the production of predictions that 

significantly match the actual segments.  

The Precision metric, which depicts the 

percentage of properly predicted positive segments out of 

the overall predicted positives is 96.55% and 91.05% on 

the training and test set, respectively. Therefore, the higher 

rate indicates the model’s efficiency in properly 

identifying positive segments. Similarly, the Recall metric, 

which shows the percentage of properly predicted positive 

segments out of the whole positive segment, is 

approximately 97.31% and 92.47% on the training and test 

set, respectively. Hence, this implies that the proper 

identification of true positives is greater in both datasets. 

Loss is the measure of error of the model’s prediction with 

a loss value of 11.09 on the training set and 17.04 on the 

test set. Where lower values imply better performance, and 

the model’s performance on the test set is poor, it is not 

necessary to worry about it as it is natural behavior. It 

often reveals that the model has learned some pattern in 

the training dataset. Accuracy is the ratio of correct 

predictions per number of all samples. Here, the accuracy 

is 98.06% and 94.90% for the training and the testing 

dataset, respectively. This performance level indicates that 

the model generalizes properly, reaching high correctness 

in its predictions. Although the correctness of the test data 

is lower than that of the training one, the model fulfills its 

purpose of task performance. The proposed model is 

compared with other models and the corresponding 

comparison table is reported in Table-2. 

 

Table-2. Comparison of performance metrics. 
 

Model Name IoU Accuracy 

FPN [19] 89.78 93.7 

MANet [20] 89.0 93.3 

Unet [21] 83.31 91.9 

Proposed CNN 94.32 94.90 

 

Thus, in Table-2, a comparison is shown where 

two key performance metrics are taken and compared for 

different models. Each model has both its approach to the 

task and a certain level of “effectiveness”. So, Feature 

Pyramid Network [19] has an IoU of 89.78% and an 

accuracy of 93.7%. The second model displayed in the 

table is MANet [20]. It has an IoU of 89.0% and an 

accuracy of 93.3%. The U-Net [21], which has IoU = 

83.31% and accuracy = 91.9%. The results of the proposed 

CNN model, which has IoU 94.32 and an accuracy of 

94.90%, are represented in the last lines of the table. It 

should be noted that in both cases, the proposed model has 

the highest values, i.e. it most accurately identifies the 

overlap and maximally true predictions. 
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5. CONCLUSIONS 

To conclude, the proposed framework for 

improving the prediction, classification, and segmentation 

of skin lesions, specifically melanoma, has great potential. 

The proposed model using a modified DenseNet201 has 

been shown to predict and classify skin conditions 

accurately and the explainable AI method of LIME has 

been shown to enhance the transparency of the model for 

interpretability by the clinicians. Particularly, the 

segmentation module of the boundary of the melanoma 

lesion provides valuable information about lesion size and 

its extent for planning therapy. The performances of the 

proposed model with those of other models in prior 

literature and proved their superiority. Therefore, the 

proposed framework has a high potential for practical 

applications in clinical settings. By making highly 

accurate and explainable predictions and segmentation, the 

current framework can be highly conducive to skin disease 

diagnosis and treatment, which can lead to favorable 

outcomes for medical practitioners and patients alike. 
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