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ABSTRACT 

This work describes the influence of a magnetic environment on the circulation of matter and thermal energy over 

an accelerating advanced inclined isothermal sectional surface. The temperature is elevated to 
E . The proximity intensity 

is increased to L . The Laplace-transform approach is applied to solve the dimensionless analytical equation. In this 

research work different physical variables including thermal grashof number (Tg), mass grashof number (Tm), Schmidt 

number (Sc), Prandtl number(Pr), time(t), velocity profile ( J ), temperature ( E  ), and intensity ( 'L ) are investigated. The 

output of the graph produced by the Matlab software commands an energy equation, momentum equation, and 

concentration equation. The values are shown in an aligned pattern for a variety of flow variables. Diagrammatic 

representations of the fluid velocity profiles are provided. The velocity rises corresponding to different Tg and the velocity 

rises corresponding to different Tm. As the angle is decreased, the velocity increases differently. )( 1 , As the different 

magnetic environment values lower, the velocity rises. Elevated values of angle (
1 ), Sc, Pr, and M   contribute to an 

enhancement in local skin friction, and an upsurge in Gr, Gc, and t leads to a reduction. A tabulated presentation of Nusselt 

quantities reveals a positive correlation with increasing Pr. Similarly, Sherwood quantities, as tabulated for various 

parameters, demonstrate a proportional increase with rising Sc. 

 
Keywords: accelerated, isothermal, inclined plate, vertical plate, heat transfer, mass diffusion, magnetic field. 

 
Manuscript Received 19 June 2024; Revised 11 August 2024; Published 31 October 2024 

 

INTRODUCTION 

The practical uses of a magnetic force on 

circulation through an angled homogeneous perpendicular 

surface having thermal as well as changeable mass 

propagation are many. Controlling thermal and material 

transmission is critical in metallurgical operations. The 

investigation of the magnetic environment's effect on flow 

can provide information for optimizing processes such as 

solidification and casting. Heat dissipation is a significant 

aspect of electronic devices. Understanding how a 

magnetic field affects the movement of heat and mass 

around inclined surfaces might help designers create more 

efficient cooling solutions for electronic components. 

Chemical reactors frequently involve processes involving 

heat and mass transfer. Magnetized environments can be 

utilized to improve or regulate these processes, resulting in 

efficient chemical production. Understanding the influence 

of a magnetized environment on HMT in the atmosphere 

or water bodies has environmental engineering 

applications. This understanding can be used to simulate 

and optimise pollution dispersion or heat exchange in 

natural systems. The findings have ramifications for 

energy conversion systems like solar collectors. 

Optimising heat and mass transfer in these systems using 

magnetic fields can improve energy conversion efficiency. 

Understanding the influence of magnetic fields on HMT 

can be applied in areas including hyperthermia treatment, 

where controlled heating of tissues is used for therapeutic 

purposes. In aerospace engineering, heat transfer is critical 

in the design of spacecraft and high-speed vehicles. 

Investigating the influences of magnetic fields on HMT 

close to surfaces can build efficient thermal protection 

systems. Controlling HMT is critical in the manufacturing 

of nanostructures and Nano devices using nanotechnology. 

Magnetic fields provide a fresh technique to accurately 

manipulate these processes at a Nano scale level.  

Understanding magnetized environment effects on flow 

across exteriors could be used to optimise the 

effectiveness of energy harvesting equipment in terms of 

renewable energy, such as wind or tidal power. In the field 

of space exploration, where heat dissipation is difficult, 

the research can be used to design better thermal 

management systems for spacecraft and equipment. 

Chamkha et al. [1] investigated comparable 

resolutions for the concurrent HMT phenomena in the 

presence of a magnetic field. The investigation focused on 

unrestricted convective flow across an inclined plate. The 

tilted surface under consideration was subject to interior 

thermal production or assimilation. This research delved 

into the intricate interplay between magnetic effects, 

thermal transmission, and material transmission in the 

context of natural convection. The research provided 

significant knowledge on the conduction of thermal and 

material transmission in the presence of magnetic domains 

and sloped substrates that include interior origins or 

thermal drains. Takhar et al. [2] examined how non-
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uniform surface heating or material transmission in certain 

parts of an angled surface impacts MHD's spontaneous 

convective flow. The investigation analyzed the influence 

of temperature changes and material transmission on 

spontaneous convective flow in a high-porosity 

environment with layered temperature. The investigation 

specifically examined how these factors interact with 

electromagnetic and physical forces. The work offers 

useful knowledge in slanted areas, varying barrier 

situations, and magnetised forces on the process of 

convection thermal and material transportation in 

elevated-perforation channels that exhibit temperature 

layers. Ibrahim et al. [3] investigated the processes of 

intermittent MHD micropolar liquid circulation and 

thermal transmission across an upward permeable surface 

via a separate permeable medium. The research examined 

the occurrence of HMT dispersion in conjunction with a 

consistent thermal supply. Rahman and Sattar [4] 

investigated the MHD convection circulation of a 

micropolar liquid across a vertically oscillating permeable 

surface, taking into consideration thermal production or 

absorption. Ogulu and Makinde [5] investigated the 

behaviour of an unrestrained and radiative fluid across a 

perpendicular surface under an unstable hydromagnetic 

unconstrained convective and uniform thermal 

fluctuation. Orhan Aydm and Ahmet Kaya [6] investigated 

the thermal energy across an angled surface by applying 

MHD combined convection approaches. Uddin and Kumar 

[7] investigated the liquid circulation across a slanted 

surface submerged in a permeable media, focusing on 

unstable free convection. Shivaiah and Anandrao [8] 

examined the synthetic procedures on MHD convectional 

circulation across an upward permeable surface. They also 

examined the impact of vacuum or insertion. Singh and 

Makinde [9] investigated the properties of MHD on an 

unrestricted convective circulation down an angled surface 

heated by Newtonian warming. They also considered the 

impact of volumetric thermal production. 

Makinde [10] investigated the presence of MHD 

combined convective stationary spot circulation 

approaching a perpendicular surface immersed in a 

permeable environment. The investigation examined the 

consequences of emission and interior temperature. Puneet 

Rana and colleagues [11] investigated the combined 

convective barrier zone circulation of a nanofluid down a 

slanted surface in a permeable environment.  Rashidi et al. 

[12] examined the estimated approaches for the 

elastomeric circulation of a hydro-magnetic barrier layer 

across an evolving substrate. The investigation took into 

account two supplementary parameters. Ali et al. [13] 

investigated the combined impact of thermal along 

material transmission on MHD convectional circulation 

over an angled surface within a permeable medium. Vijay 

Kumar et al. [14] investigated a generated magnetic 

environment and emission on the movement of a 

combined convective liquid across a permeable 

perpendicular surface in the presence of MHD and 

viscosity spread.  Ismail et al. [15] examined the dynamics 

of intermittent MHD unconstrained convective circulation, 

considering the thermal and material transmission in a 

permeable environment close to an angled surface. 

Nandkeolyar and Das [16] investigated the 

MHD unconstrained convection emission circulation 

across a horizontal surface with thermal fluctuation over a 

slope. Narahari et al. [17] investigated the influence of 

increasing temperature on an unstable MHD spontaneous 

vortex movement across a slanted panel of unlimited 

extent. The analysis considered emission, thermal origin, 

and synthetic response. Das et al. [18] examined the 

combined convection MHD slippage circulation across an 

angled permeable surface, taking into account the 

implications of fluid dispersion.  

Muthucumaraswamy and Jeyanthi [19] 

investigated hall impacts on the behaviour of 

MHD circulation across an unbounded perpendicular 

surface. Anjali Devi and Suriyakumar [20] suggested that 

the circulation was further influenced by the presence of a 

rotational liquid, which exhibited variations in HMT. 

Additionally, the investigation considered a 1st-

level synthetic process. The present study focuses on the 

examination of hydromagnetic mixed convective 

nanofluid slippage circulation across an inclined stretching 

surface, including interior thermal uptake & pressure. 

Muthucumaraswamy and Sivakumar [21] examined the 

characteristics of an MHD circulation surrounding a 

symmetrical limitless homogeneous perpendicular plane. 

The analysis considered the consequences of thermal 

emission as well as a synthetic response. Dhal et al. [22] 

examined the influence of HMT on an MHD unrestricted 

convective circulation across an angled and linearly 

advanced surface immersed in a permeable substance 

subjected to thermal input. Sharma and Gupta [23] 

investigated heat exposure on MHD interface barrier 

circulation and thermal transmission over an angled 

surface having convection barrier circumstances. They 

applied a quantitative approach using non-linear research 

to evaluate this occurrence. Thirupathi Thumma et al. [24] 

investigated the computational prediction of 

MHD circulation from an undulating slanted surface. 

Rajput and Gaurav Kumar [25] investigated the 

incorporation of magnetic fluctuation, thermal origin, and 

changeable degree impacts. This research examined the 

emission influences on MHD circulation across a sloped 

surface with changeable exterior heating along with 

material dispersion. Additionally, the research included 

the HC existence. Shankar Goud et al. [26] explored the 

influence of HC as well as emission on the 

MHD spontaneous convective circulation across a tilted 

conical-propelled surface having changeable heating in a 

permeable environment. Abro et al. [27] investigated the 

quantitative assessment of liquid circulation in a 

circumferential conduit with a liquid, employing the 

Hankel Transform. Venkateswarlu et al. [28] examined the 

influence of Soret and Dufour on the convective 

hydromagnetic circulation of a reactive liquid across a 

geometrically propelled slanted permeable surface with 

thermal uptake and elastic dispersion.  Ahmad et al. [29] 

focused on the quantitative assessment of spontaneous 

convective circulation of MHD liquids with thermal 

energy and a 1st level synthetic response.   
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Usharani et al. [30] investigated the MHD flow 

on a sloped perpendicular surface comprising 1st-

level synthetic response, stochastic material dispersion, as 

well as heat exposure. Khan et al. [31] examined the 

thermal generation and exposure of MHD convective 

circulation in Darcy's environment, employing a partial 

methodology. Anique et al. [32] researched the 

unconventional circulation on a sloped barrier resulting 

from thermal-dependant characteristics in the context of a 

chemical response. Praveen Kumar Dadheech et al. [33] 

proposed a method for calculating flexibility in a radiative 

inclining MHD slippage inside permeable surroundings, 

utilising 2 distinct liquids. Anique et al. [34] examined 

unconventional circulation on an inclined barrier resulting 

from temporally interrelated features amidst a 

synthetic reaction. Praveen Kumar Dadheech et al. [35] 

conducted a flexibility analysis in a convective angled 

MHD slippage movement involving 2 distinct liquids. 

Nagarajan et al. [36] examined the heat expansion on the 

flow characteristics across a sloping 

accelerated rectangular surface with continuous material 

dispersion.  Mopuri et al. [37] examined the influence of a 

chaotic MHD on the convection of a classical liquid past a 

sloping surface. The analysis considered a scientific 

response, emission intake, and the Dufour 

impact.  NageshGulle and Raghunathkod [38] investigated 

the Soret emission and synthetic reaction of an MHD 

liquid over an inclined perpendicular surface immersed in 

a permeable environment. Sheri et al. [39] investigated the 

instantaneous MHD circulation across a slanted surface, 

concentrating on the hall current, synthetic response, and 

emission influences.  Sundar Raj et al. [40] examined the 

chemical processes on a slanted annealed perpendicular 

surface. Rajaraman and Muthucumaraswamy [41] 

conducted a numerical investigation on the transient 

magnetohydrodynamic (MHD) flow over an oscillating 

vertical plate. The study considered the effects of thermal 

radiation and viscous dissipation. 

The study looks at the effect of 

Magnetohydrodynamics (MHD) on the flow around a 

uniformly accelerated inclined plate with constant 

temperature and inconsistent mass diffusion. Using the 

Laplace-transform technique, the indeterminate governing 

equations are resolved, producing solutions given in 

exponential and complementary error functions. This 

research provides important insights into technologies 

such as magnetic control of warm iron flow in the 

fabrication of steel, metal-liquid cooling in nuclear 

reactors, and magnetic suppression of molten 

semiconducting elements. 

 

SOLUTION COMPUTATIONAL 

The investigation focused on the erratic 

movement of a viscid inert liquid across a slanted surface 

that is progressively intensified, in the midst of a magnetic 

environment. The surface preserves a consistent heat and 

undergoes varying material dispersion. The erratic 

circulation of a viscid inert liquid that is originally at 

respite and encloses a tilted surface E  and *

L  is seen 

here. The upward orientation along the surface is 

designated as the x-coordinate, whereas the orientation 

perpendicular to the surface is designated as the y-

coordinate. The surface and the liquid are both at a similar 

temperature E  at the same time 04 t . The surface is 

expedited with 40= tuu   at time 0>4t  , and the degree 

from the surface is elevated to E  ,  as does the intensity 

level 
*

L
 

close to the surface. It is anticipated that a 

transverse magnetic environment of homogeneous strength 

would be supplied orthogonal to the surface. The 

controlling of the uneven circulation is governed by the 

formulae specified within Boussinesq's approach.  
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The specified initial along with other criteria are 

as follows:  
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While the following dimensionless parameters 

are originated:  
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leads to solutions (1) to (4) 
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In dimensionless parameters, the initial as well as 

limiting constraints are: 
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The undefined regulating formulae (6) to (8) are 

resolved via the conventional Laplace-transform approach, 

yielding the following outcomes:   
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SKIN  FRICTION  ( )   

The friction factor for non-dimensional plates 

appears to be  
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PERFORMANCE AND ARGUMENT 

In order to get a more comprehensive 

understanding of the issue, quantitative computations are 

performed, taking into account a range of fundamental 

factors and their impact on circulation and transit 

properties. The Sc 2.01 is set to a value representative of 

water vapor, and the Pr 7 is specified for water. The 

computations involve determining the velocity and 

concentration for different physical parameters such as Pr, 

Gr, Gc, magnetic field strength, duration, and the angle of 

inclination. 

Figure-1 depicts the impact of the magnetized 

environment variable on velocity for a given set of 

conditions involving specific values of

),15,2,5,10=(M  4.0,5=,2= =tGcGr  and angle 

3/=1  . Similarly in Figure2 )15,2,5,10=(M  , 

8.0,5=,2= =tGcGr  and angle 6/=1   and 

Figure-3 ( 15,2,5,10=M  ), 2.0,5=,2= =tGcGr  

and angle 4/=1    illustrate the influences of the 

magnetized environment variable on speed under different 

conditions. When the three numbers are observed, a 

consistent observation emerges: the velocity demonstrates 

an upward trend as the magnetic field parameter decreases. 

The observed trend suggests that a decrease in the 

magnetic field variable is associated with a surge in pace. 

This observation is consistent with existing expertise since 

it is well-documented that the existence of a magnetic 

environment imposes a resistive influence on the 

movement of unconstrained convective circulation, 

resulting in a reduction in its speed. 

 

 
 

Figure-1. ‘v’ vs. ‘M’. 
 

 
 

Figure-2. ‘v’ vs. ‘M’. 
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Figure-3. ‘v’ vs. ‘M’. 
 

In Figure-4, the variations in Gr,

)15,10,2,5=(Gr 4/,10,2,2.0 1  ==== MGct , 

revealing a noticeable trend of increasing velocity as Gr 

values rise. Similarly, Figure-5 Gc, )15,10,2,5=(Gc

6/,2,2,2.0 1  ==== MGrt , portrays the 

diverse Gc scenarios, and it is evident that higher Gc 

values correspond to increased velocities. 

 

 
 

Figure-4. ‘v’ vs. Gr. 

   

 
 

Figure-5. ‘v’ vs. Gc. 

Figure-6 displays the examination of velocity 

contours for various 5,=6),0.2,0.4,0.=( Mt   

3/5,=,2= 1  =GcGr  . Similarly, in Figure-7, the 

velocity contours for various 60.2,0.4,0.=t

4/2,==2,= 1  = GcGrM  are investigated and 

depicted. It is noteworthy that in both Figure-6 and Figure-

7, a consistent observation emerges: the velocity 

demonstrates an upward trend with higher numbers of t  . 

 

 
 

Figure-6. ‘v’ vs. t. 

 

 
 

Figure-7. ‘v’ vs. ‘t’. 
 

Figure-8 illustrates the examination of velocity 

contours for various

10==5,=6),/,4/,3/=( 1 GcGrM  . 

Notably, the observation from the figure indicates that as 

the angles decrease, there is a corresponding increase in 

velocity. 
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Figure-8. ‘v’ vs. ‘α’. 
 

In Figure-9, velocity contours are presented for 

different numbers of 10,5=Gr , 10,5=Gc , 

4/,2,4.0 1  === Mt . It is evident from the figure 

that an increase in either the Gr or Gc corresponds to an 

increment in ‘v’.  
 

 
 

Figure-9. ‘v’ vs. ‘Gr’ and ‘Gc’. 
  

Figure-10 reveals the impact of concentration 

profiles for various numbers of time (t) 

3.08),.0,60.2,0.4,0.=( =Sct . A notable observation 

from the figure is that as time increases, there is a 

corresponding elevation in the intensity. 

 

 
 

Figure-10. Concentration vs.‘t’. 
 

Table-1 illustrates the impact of     different 

parameters. It is evident that raising the incline,
 rP  and 

cS  

, and results in an augmentation of skin friction ( ). 

Conversely, it has the opposite effect of escalating the 

time, thermal, and mass Grashof numbers. 

 

Table-1. The Sherwood number for various elements. 
 

t  cS  hS  

0.2 2.01 0.7154 

0.2 0.16 0.2018 

0.2 0.6 0.3908 

0.4 2.01 1.0117 

0.4 0.3 0.3908 

0.6 0.16 0.3496 

0.6 0.3 0.4787 

 

Table-2 illustrates the impact of cS and t  on hS  

as follows. The increase in direct and proportional 

influences. As cS
 
rises, the mass transfer also experiences 

a corresponding increase.  

 

Table-2. Nusselt amount for different variables. 
 

t  rP  uN  

0.2 7.0 3.3377 

0.2 0.71 1.0630 

0.4 7.0 2.3601 

0.4 0.71 0.7516 

0.6 7.0 1.9270 

0.6 0.71 0.6137 
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Table-3 presents the results for different physical 

parameters 
rP  and times. It highlights that an elevation in 

rP  leads to a concurrent increase in )(Nu  
, suggesting a 

direct correlation between the rise in heat transmission and 

the increase in Pr.  

 

Table-3. Skin -Friction due to several reasons. 
 

(Pr=7, Sc=2.01) 

Angle

(
1 ) 

t  Gr  Gc  M 
 

  

3/  0.8 5 2 5 -2.5556 

6/  0.2 2 5 10 -3.3972 

4/  0.6 2 2 2 -2.3980 

6/  0.8 5 5 2 -5.4681 

4/  0.6 2 5 5 -5.2281 

3/  0.4 2 2 2 -1.9792 

6/  0.2 5 5 5 -3.7468 

3/  0.8 5 2 2 -1.9094 

4/  0.4 2 2 10 -3.3226 

 

CONCLUSIONS 

The analysis focused on examining the 

magnetohydrodynamics of the circulation features when a 

consistent temperature is applied to an angled surface, 

whilst incorporating the presence of fluctuating material 

dispersion. The undefined regulating formulas are solved 

with Laplace Transform techniques. The investigation 

involves a visual examination of velocity patterns and 

intensity across different variables, including Gr, Gc, 

magnetized environment, Pr, Sc, and t. It was noticed that 

the velocity exhibited a positive correlation with the rising 

values of Gr, Gc, and t. The velocity exhibits an increase 

when the values of the magnetic field decrease. The rise in 

α, Pr, and Sc leads to an elevation in τ.  
 

NOMENCLATURE 

A  constant 

0B  external magnetic field 

*L       species concentration in the fluid  


*L  concentration of the plate 


*L  concentration of the fluid far away from the plate 

L        dimensionless concentration 

pL'       specific heat at constant pressure  

D        mass diffusion coefficient  

Gc            mass Grashof number 

Gr           thermal Grashof number 

g        accelerated due to gravity 

k        thermal conductivity  

M   magnetic field parameter 

Nu  Nusselt number 

Pr       Prandtl number 

Sc       Schmidt number 

Sh  Sherwood number  

E  temperature of the fluid far away from the plate 

E   temperature of the plate 

)( E  temperature on the wall 

)(,  EE    temperature of the fluid near the plate  

4t      time  

t         dimensionless time 

u        velocity of the fluid in the x-direction  

0u       velocity of the plate  

JJ ,    dimensionless velocity 

x        spatial coordinate along the plate 

y        coordinate axis normal to the plate  

Y        dimensionless coordinate axis normal to the plate 

 

GREEK SYMBOLS 

1,  thermal diffusivity  

       volumetric coefficient of thermal expansion  

 *    volumetric coefficient of expansion with   

concentration  
       coefficient of viscosity  

  electric conductivity 

       kinematic viscosity  

       density of the fluid  

        dimensionless skin-friction  

        dimensionless temperature  

 ,     similarity parameter 

erfc     complementary error function 

 

Subscripts 

       conditions at the wall 

       conditions in the free stream  
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