
 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 933

ENHANCING CLOUD PERFORMANCE THROUGH GREY WOLF

OPTIMIZATION: A ROBUST APPROACH TO LOAD BALANCING

Kethineni Vinod Kumar

1
, A. Rajesh

1
 and R. Balakrishna

2

1Department of Computer Science and Engineering Vels Institute of Science Technology and Advanced Studies (VISTAS),

PV Vaithiyalingam Rd, Velan Nagar, India
2Department of Artificial Intelligence and Data Science Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering

College, Chennai, India

E-Mail: kethineni.vinod@gmail.com

ABSTRACT

Much progress in computing has resulted from the advent of cloud computing. End users may reap the benefits of

a plethora of cloud technologies. Services are accessible through online login only. Load balancing is the cornerstone

problem in cloud computing that has stumped researchers. Users are happier and systems are more productive when load

balancing is used to distribute tasks evenly across all available CPU cores. Moreover, it would be difficult to maintain a

load balance across resources since resources are often spread in a dispersed fashion. By using a met heuristics approach,

several load-balancing techniques have sought to optimize system performance. In this research, we apply the Optimization

of gray wolves (OGW) technique to balance loads reliably among all available resources. In the first step, the OGW

algorithm looks for idle or busy nodes, and then it attempts to determine the threshold and fitness function for each of these

nodes. Simulation findings in CloudSim confirmed that the suggested approach yields superior outcomes in terms of cost

and reaction time.

Keywords: optimization of gray wolves, mouse customized golden eagle optimization, load-balancing system.

Manuscript Received 13 April 2024; Revised 3 August 2024; Published 12 October 2024

1. INTRODUCTION

One definition of cloud computing is "a paradigm

for presenting, consuming, and delivering IT services and

other shared network resources in a way that takes

advantage of the scalability, flexibility, and economics of

the cloud" [1]. Users may utilize programmers from

anywhere in the globe thanks to cloud computing and

services [2]. With this approach, customers may make use

of the service when and where it is most convenient for

them, independent of their geographical proximity to the

cloud. Commercially successful firms like Google,

Amazon, and Microsoft all back the cloud computing

paradigm. This help is provided via the use of networked

computer hardware and software resources [3]. Modern

cloud computing infrastructures provide users with access

to a plethora of on-demand, virtual services [4]. As

defined by the Oxford English Dictionary, "cloud

computing" refers to the delivery of hardware and

software through the Internet in exchange for payment

from end users [5]. Consumers may get their apps via the

internet in the form of applications and have them installed

on a cluster of network servers rather than on their local

PCs. In other words, people can instantly connect and have

access to cloud services only if they have access to a

mobile device, computer, etc. [6].

Load balancing is the technique of dividing up

tasks across available computer systems in an equitable

manner to minimize downtime and maximize production

[7]. There is a decrease in system efficiency [8] when

certain virtual machines (VMs) have a greater load volume

than others. It would limit the cloud's capacity and have an

impact on how quickly certain functions might be

completed. In addition, the cloud system has to allocate

demands among its resources when it is hit with a much

larger number of requests. The efficiency and usability of

the cloud system's resources are crucial to improving its

overall performance [9]. The availability of many

computing resources in a cloud system allows it to quickly

adapt to the needs of its customers. Hence, a method is

needed to pick suitable resources in responding to user

requests [10], and doing so correctly requires taking into

account the features of tasks.

To overcome connection restrictions and

establish QoS standards, this work proposes a strategy for

choosing the best services to get optimum QoS [11].

Quality of service (QoS) is a major issue in cloud

computing. Optimization of gray wolves (OGW) and

quality of service (QoS) have been combined to create the

suggested solution. The OGW method, which is used for

load balancing, was inspired by the natural behaviour of

grey wolves [12], which involves the wolves beginning to

look for food in their area. First, the nodes in the present

investigation need to choose the cluster leader (CH).

Typically, the node with the most neighbors is selected as

the CH node. To determine whether or not the virtual

machine is overloaded, the threshold of nodes is

computed; if the load is less than the threshold, the virtual

machine is under loaded. After the alpha and beta wolves

have located and evaluated the most promising node, they

will launch an assault on the prey and ultimately choose

that node as their target. The following is a summary of

the findings, which show that this strategy is preferable to

others in terms of effectiveness.

Quality of Service (QoS) hybridization that better

meets user requirements.

mailto:kethineni.vinod@gmail.com*

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 934

 Improving load balancing by decreasing reaction time

and the cost of picking VMs.

 Using several different strategies for preserving load

balance, conduct a series of experiments to assess the

method's efficacy.

The remaining sections of this article are

structured as follows: Part 2 discusses the existing

literature, whereas Section 3 details the suggested method.

Section 4 displayed the collection of experimental data,

and Section 5 presented the outcomes of the analysis. To

wrap things up, we have a section dedicated to closing

remarks and suggestions for further research.

2. RELATED WORK

The load-balancing method of the non-

concentrated artificial bee colony (ABC) algorithm was

proposed by Kruekaew and Kimpan [13]. Load balancing

in the cloud, it was noted, is either growing or shrinking in

response to seasonal changes in demand, which served as

inspiration from nature. Users' needs are dynamically

balanced by the allotted servers. Each of these machines is

a "virtual server," and it has its own "virtual service

queue."

Each server, much like a honeybee, dances as it

processes a request and demand from the queue to

determine the necessary benefits. The time it takes the

processor to complete a request is one indicator of such

benefits. In this case, the honeybee dance represents the

billboard. The server might choose benefits for the

possible billboards once a request has been processed. It

can also do services (thus the scout behaviour) and look at

the commercials (like watching a dance). A server may

continue in the same virtual server and become credible

advertising if the benefits are assessed and large relative to

the total benefits of a colony. The servers act as explorers

and scouts if nothing else is specified. The evaluation

results showed that the aforementioned strategy shortens

both makespan and reaction time. Even yet, the suggested

method suffers from high prices and limited dependability.

The enhanced particle swarm optimization approach was

proposed by Devaraj et al. [14]. (PSO). This algorithm has

the potential to efficiently provide users with resources

that are well-suited to their current endeavors. A

simulation approach was included to aid the PSO

algorithm. The latter approach was used, and it not only

helped prevent PSO from becoming stuck in local

optimums but also made the process more efficient

overall. The PSO method chooses the particle with the

smallest point-to-line distance as the global best (gbest).

The best options for particles were chosen by using the

smallest distance between two points or two lines. In terms

of throughput, dependability, and execution time, this

approach performs well. Nevertheless, it isn't very useful

for tracking things like energy use and service status.

To achieve load balancing, Lilhore et al. [15]

suggested an exploratory scheduling approach using the

hybrid particle swarm optimization (HPSO) algorithm.

Our approach aimed to minimise the longest job

completion time across all cloud processors while still

maintaining load balancing.

It was expected then that the cloud environment

and the many processes running inside it would make use

of a variety of resources, each with its unique processing

capabilities. The time it takes to complete a job may thus

vary depending on how it is distributed among available

resources. The results demonstrated that the approach

might speed up resource exploitation while decreasing the

duration of operations. The capabilities in terms of

dependability and service monitoring, however, are

somewhat restricted.

The load-balancing method of the non-

concentrated artificial bee colony (ABC) algorithm was

proposed by Kruekaew and Kimpan [13]. Load balancing

in the cloud, it was noted, is either growing or shrinking in

response to seasonal changes in demand, which served as

inspiration from nature. Users' needs are dynamically

balanced by the allotted servers. Each of these machines is

a "virtual server," and it has its own "virtual service

queue."

Each server, much like a honeybee, dances as it

processes a request and demand from the queue to

determine the necessary benefits. The time it takes the

processor to complete a request is one indicator of such

benefits. In this case, the honeybee dance represents the

billboard. The server might choose benefits for the

possible billboards once a request has been processed. It

can also do services (thus the scout behaviour) and look at

the commercials (like watching a dance). A server may

continue in the same virtual server and become credible

advertising if the benefits are assessed and large relative to

the total benefits of a colony. The servers act as explorers

and scouts if nothing else is specified. The evaluation

results showed that the aforementioned strategy shortens

both makespan and reaction time. Even yet, the suggested

method suffers from high prices and limited dependability.

The enhanced particle swarm optimization approach was

proposed by Devaraj et al. [14]. (PSO). This algorithm has

the potential to efficiently provide users with resources

that are well-suited to their current endeavors. A

simulation approach was included to aid the PSO

algorithm. The latter approach was used, and it not only

helped prevent PSO from becoming stuck in local

optimums but also made the process more efficient

overall. The PSO method chooses the particle with the

smallest point-to-line distance as the global best (gbest).

The best options for particles were chosen by using the

smallest distance between two points or two lines. In terms

of throughput, dependability, and execution time, this

approach performs well. Nevertheless, it isn't very useful

for tracking things like energy use and service status.

To achieve load balancing, Lilhore et al. [15]

suggested an exploratory scheduling approach using the

hybrid particle swarm optimization (HPSO) algorithm.

Our approach aimed to minimise the longest job

completion time across all cloud processors while still

maintaining load balancing.

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 935

It was expected then that the cloud environment

and the many processes running inside it would make use

of a variety of resources, each with its unique processing

capabilities. The time it takes to complete a job may thus

vary depending on how it is distributed among available

resources. The results demonstrated that the approach

might speed up resource exploitation while decreasing the

duration of operations. The capabilities in terms of

dependability and service monitoring, however, are

somewhat restricted.

Comparison of Previous Approaches

S. No
Mouse Customized Golden Eagle Optimization

(MCGEO)
Optimization of gray wolves(OGW)

t

Mouse Customized Golden Eagle Optimization

(MCGEO) model is developed for optimal load

balancing, which is a conceptual combination of

traditional Golden Eagle Optimizer (GEO) and Cat

and Mouse-Based Optimizer (CMBO).

OGW is a nature-inspired optimization

algorithm based on the social hierarchy and

hunting behavior of grey wolves.

2
Improves convergence and addresses the

optimization problems in load balancing.

The algorithm simulates the leadership hierarchy

of grey wolf packs, including alpha, beta, delta,

and omega wolves.

3

The MCGEO achieved a throughput value of ∼281.6255, at 150 tasks for the cloud

environment-2 this proves the superiority of the

proposed approach.

The optimization process involves updating the

positions of a population of candidate solutions

based on the hunting and collaboration behaviors

of wolves.

The cloud server, when receiving lots of service

requests then the server needs to assign load equally and

this process is called load balancing. Load balances are of

two types, hardware and software load balancer. The

hardware load balancer implementation cost is so high

therefore these types of load balancers are not popular.

Network Load Balancing: This technique is used

to balance the network traffic across multiple servers or

instances. It is implemented at the network layer and

ensures that the incoming traffic is distributed evenly

across the available servers.

3. THE PROPOSED MODEL

A vast number of data centers and users are

located in different parts of the globe to create the cloud

computing ecosystem [19]. The cloud must efficiently

arrange a huge number of user requests and offer them the

appropriate services [20]. It is essential that cloud

computing equitably distributes workloads among

available resources. If the cloud wants to keep its users

happy, the workload must be balanced among all of its

nodes. In the context of distributed, grid, and cloud

computing architectures, several load-balancing methods

have been developed. The focus of this research is on

preserving QoS-driven load balancing. To reduce reaction

time and cost associated with locating suitable resources, a

novel QoS-based approach to load balancing has been

presented. The suggested technique uses the OGW

algorithm to keep QoS-based load balancing in place in a

cloud computing setting.

3.1 Statement of the Problem

Let's say you have Cloud c, which consists of n

actual computers or any physical machine made up of M

VMs:

Each given host computer hosts several virtual

machines in this way:

To begin, VM1 represents the first virtual

machine, and VMm is the final one (VM).

Similarly, if users make up the cloud the user's

function may be denoted as follows:

The procedure's primary objective is to keep the

load evenly distributed among all VMs in a cloud

environment, while also minimizing expenses and energy

consumption and optimising resource utilisation and

quality of service. Loads need to be balanced for an

efficient planning approach to be attained. Without it, the

system will use an excessive amount of resources trying to

do its job. This research proposes a multi-purpose

approach based on the OGW algorithm that is both

efficient and fair, allowing it to solve this issue. The

suggested load-balancing mechanism is shown in Figure-

1.

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 936

Figure-1. The proposed load-balancing system.

3.2 Virtualization in the Cloud

Using virtualization technologies to merge

service providers is the safest option. By the use of

virtualization, many virtual machines (VMs) may be run

on a single piece of hardware. These virtual machines

(VMs) may run independent versions of software [22].

The use of virtualization in this way enables the

deployment of many incompatible OSes to run a single

programme in parallel. The term "virtualization" refers to

the process of making a digital replica of a physical object

[23]. This may be an operating system, a computing

server, storage, or a network. There is a common

misconception that virtualization is the same as cloud

computing. Cloud computing relies on several different

technologies, one of the most fundamental being

virtualization. As compared to virtualization, the cloud's

primary goal is resource management [24]. What kind of

infrastructure, what kind of environment, and what kind of

software as a service are all factors here? Although its

primary goal is more efficient use of resources, the term

"virtualization" may have a wide range of interpretations

depending on the context.

The following are examples of possible

applications:

The four main categories of virtualization are

server, storage, network, and service.

Figure-2 demonstrates how, with the help of

virtualization management, a data centre may host all four

types of virtualization-server, network, storage, and

service. While other kinds of virtualization are

theoretically feasible, their implementation in data centres

is still in its infancy.

Figure-2. Types of virtualization.

3.3 The Immigration of Virtualization Machines

Virtual machine (VM) immigration is a strategy

used to improve cloud data centre resource management

[25]. The flexibility and scalability of cloud data centres

benefit from this influx of immigrants. In this context,

immigration is moving the contents of a computer's hard

drive or CPU to another system. Energy management, load

balancing, and distribution, reliability in the face of

failure, speeding up responses, enhancing service quality,

fixing bugs, and maintaining servers are all part of this

process. When managing resources, load balancing and

server consolidation are two primary motivations for

immigration.

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 937

Balancing the load, the objective is to avoid

excessive resource disparity across data center physical

servers by spreading the processing load evenly among

them.

Interaction of Servers Optimization techniques

are often employed throughout the VM setup process to

determine whether a certain physical host is the best

choice for a given VM. Hence, reducing the total number

of physical hosts helps save money on power bills. In

monitoring VM performance and resource use, dynamic

resource allocation algorithms make choices about load

balancing or combining service providers (Figure-3).

3.4 The Parameters of Service Quality

Timeframe and use of materials it’s a look at how

long typical tasks take about the total time it takes to finish

the processing. Being the polar opposite of utilisation,

which prioritizes service quality optimization in the cloud,

this metric aims to provide the lowest possible level of

service [26]. Utilization of a VM is defined as the

proportion of the makespan of jobs when the VM is active

(Eq. 4). The following steps were taken to define the issue:

members of the collection T1, T2, T3,..., Tn are

inconsistent with one another, and the VMs in the form of

VM1, VM2,..., VMm, which are all self-sufficient. It is

possible to define the overall utilisation rate using the

following five equations, where M represents the total

number of virtual machines if the time it takes to perform

task Ti in VMj is treated as PTij and the finishing time

VMj is indicated as CTj. Time spent using resources

should be extended as much as possible.

Figure-3. Migration with the aim of load balancing and combining servers.

Costs A user's cost per request to a virtual

machine (VM) is determined by how many resources

(including RAM, CPU, virtual machine, and data transfer)

are being utilised. Using Eq. 7 [27], we can calculate this

interest rate:

Where K is the number of virtual machines (VMs)

allocated to user requests, Ci is the cost per VM, and Ti is

the amount of time a user may make use of a VM.

The lag time is measured by the following

equation [10] and indicates a service's ability to provide

the desired service under any conditions and within the

time frame specified.

In RESk, the amount of work resent to Rk in a

certain period, expressed in milliseconds, is shown. More

than that, RECk displays the total number of requests that

have been gathered.

3.5 Standardizing the Values of QoS Parameters

Several units are used to measure various aspects

of the quality of service for various services. In contrast,

the objective function must be assessed consistently across

all parameters. Thus, it is necessary to standardise the

values of all QoS-related parameters on the same scale. In

reality, it is feasible to acquire consistent measurements of

the QoS metrics by normalising them. For this reason, it is

common practice to normalise parameters to a number

between 0 and 1. In general, you may divide the stated

parameters into two categories: maximisation and

minimization. [10] Equations 9 and 10 show the

normalisation relationships for the maximum and

minimum parameters, respectively.

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 938

The ith parameter's value in the candidate service

CS is denoted by CS. Qi in the aforementioned equations,

whereas its normalised value is denoted by Ncs. Qi.

Moreover, the maximum and lowest values of the ith

parameter across all services are denoted by Qi max and

Qi min, respectively.

3.6 Fitness Function

Dealing with user-imposed constraints, locating

available nodes, and allocating work to them are all crucial

parts of the QoS-based load balancing challenge, as is

optimising a fitness function. The quality of service (QoS)

characteristics for the new merged services must be

optimised using the fitness function. The tendencies of the

effects of the positive and negative parameters on the

evaluation function are opposed to one another. To solve

this issue, we must normalise all QoS factors (using the

method described in the previous section) such that their

positive and negative effects converge. Using Eq. 11, we

can define the solution's fitness function, where W is a

positive value that shows the significance of each QoS-

related parameter as chosen by the users.

3.7 The Optimization of Gray Wolves Algorithm
To improve the effectiveness of wolf hunts, this

paper presents an updated version of the Grey wolf meta-

heuristic algorithm [28]. Grey wolves, who belong to the

family of coyotes, have inspired this algorithm [29]. The

alpha () of a pack of grey wolves may be either a man or a

female. The alpha wolf, or pack leader, makes all the

important choices, such as when to sleep and when to get

up, and gives commands to the other wolves in the pack.

Wolf alphas have innate abilities that allow them to lead

and keep watch over their packs (Table-1).

The grey wolf is the pack's second-highest-ranking

member after the alpha wolf. Beta wolves, whether male

or female, hold the position of second in command in Grey

wolf packs. The pack's alphas make the calls, while the

pack's betas help get the word down to the pack's lower

ranks. Furthermore, the alpha wolves rely on the beta pack

for information and insight. One of the beta wolves will

take over as alpha if the leader dies. The delta () wolves,

who are third in rank, are divided into four groups: spies,

guards, hunters, and supporters. The delta wolves assist

keep the rest of the pack safe by patrolling the perimeter

and alertly responding to threats. Delta guards care after

for the pack's elderly, frail, and ailing members, while

Delta hunters ensure everyone has plenty to eat. When a

beta wolf dies, the most senior delta wolf is elevated to

beta rank. In OGW, alphas are seen as the optimal

strategy. The omega comes in last, followed by the delta,

and then the beta.

Table-1. Stages from discovering until exploiting the game.

First stage Detecting, following, and approaching the game

Second stage Proceeding, surrounding, and harassing the game

Third stage Attacking the game

Grey wolves hunt by surrounding and encircling

their prey in a circling pattern.

In the following, we offer the mathematical

model of this behaviour.

Where T represents the current iteration, A and D are

efficient vectors, Xp represents the hunting area, and X

represents the grey wolf's movement.

A pack's alpha is the dominant male member.

Betas and deltas will sometimes go on such a search.

Updated locations are calculated using the number of

surviving omega wolves and the top three solutions are

stored. The following formulas describe how such

activities are carried out:

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 939

Figure-4. The location and placement vector of D3 and D4.

To find the optimal solution in an N-dimensional

search space, we may use a strategy like to that seen in

Figure-4, in which grey wolves roam in cubes. The OGW

algorithm is shown in pseudo-code 1 below.

The pseudo-code of the OGW algorithm 1
1 Set the initial values of the population size n, parameter

a, coefficient vectors A and C, and the maximum number

of iterations maxiter

2 Set t=0

3 for (i=1: n) do

4 Generate an initial population Xi (t) randomly

5 Evaluate the fitness function of each search agent

(solution) f (Xi)

6 End for

7 Assign the values of the first, second, and third best

solutions Xα, Xβ, and Xδ, respectively
8 Repeat

9 for (i=1: n) do

10 Update each search agent in the population as shown in

Eq. (20)

11 Decrease the parameter a from 2 to 0

12 Update the coefficients A, and C as shown in Eq. (14)

and (15), respectively

13 Evaluate the fitness function of each search agent

(vector) f(Xi)

14 End for

15 Update the vector Xa, Xb, and Xδ
16 Set t=t+1

17 Until (t≥Maxiter). {Termination criteria are satisfed}
18 Reduce the best solution Xα

3.8 The Proposed Method

Getting Your Hands on the Application The

objective of the suggested approach is to achieve a real-

time implementation. Time to completion is of the utmost

importance in such applications.

The user requests that the action be done within a

certain amount of time and specifies that time restriction.

The user provides their input for the time restriction.

The CH is Chosen To begin, a central head (CH)

node must be chosen. The nodes with the most neighbours

are selected as CH for this purpose.

It is this node machine's job to spawn wolves,

which are then dispersed at random to the VMs in the

vicinity.

The OGW OGW process begins with the CH

node's alpha wolf. As the alpha wolf, the pack leader, and

the beta wolf, who helps make choices, begin to wander

about other nodes, the pack is well on its way to the hunt.

Locating a node the server is then given a list of potential

nodes, each of which has been deemed suitable based on

the predicted loads.

Establishing a cutoff point Each VM's load has

been analysed based on a defined threshold. Overload

occurs if the VM's load is greater than the threshold;

underload occurs if the load is less than the threshold.

Hence, if the load of each machine is more than

the threshold, that VM is among the nodes with overload

machines, and no work is allocated to it; AL represents the

mean of VMs in a data centre, and represents the standard

deviation of the mean load of the VM in a data centre.

While not idle, the machine is working hard. Now, a

fitness factor of load balancing is computed for each of the

under-load VMs, as the least-loaded machine is chosen

from among them.

That's why it's important to maximise a VM's LB

as much as possible so that it can run your desired

software.

To calculate how long it will take to do the

chores, after the method and the user's time constraint

have been applied, the algorithm determines whether or

not the time it will take the programme to complete the job

falls within the user-specified time. Estimating how long it

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 940

will take to execute each programme is essential, and this

can be done by dividing the app's weight (w) by the speed

of the VM's processor (j). An application's execution time

on a VM may be approximated using the following

formula: where Wi is the application's weight and SPj is

the VM's processor speed.

The Minimalist MinrrT Minimalist MinTT After

an estimate of how long it will take for each virtual

machine to execute the programme has been calculated, it

must be verified that the total time is within the user's

tolerance. The application's Quality of Service (QoS) is

determined for these resources if and only if the expected

time falls within the specified range. This virtual machine

(VM) is now idle since it has no tasks associated with it.

If (Mintt≤T (I,j)≤Maxtt)
Reliability assessment

 Else

Reliability=0

End

Methods for Assessing Quality of Service Quality

of service (QoS) is the probability that a system will

function as expected and without interruption for a certain

period under specified circumstances. Quality of service

(QoS) in software may alternatively be defined as the

likelihood that all allocated resources will stay effective

until all tasks are finished. Using Eq. (24), we can

determine a VM's quality of service.

Where is the number of failures in a certain amount of

time, Wi is the weight of the ith job, and Wvm is the

weight of the tasks currently running in a virtual machine.

Identifying the weight carried by each node.

Each virtual machine's workload, or "Load," is

the sum of all of the tasks that have been allocated to it.

Where Lvmj is the VM load (j), Numtask is the number of

tasks, and Rate Svmj is the service rate (in j) for the VM

(VM). It must now be decided if this virtual machine is

one of the overworked or underutilised ones. If the latter is

true, the computer is not given any work to do. Moreover,

the following formula may be used to determine the

typical VM load in a data centre:

There are M VMs in total.

Hence, the following formula may be used to

determine the data center's VM load standard deviation:

Where L is the average load of the VMs in a data centre,

Lj is the load of the jth VM, and M is the total number of

VMs and is the standard deviation of the load in the VMs.

When surrounded by wolves and contemplating

which node to pick: If XP (t) represents the values of the

location vector for the jth virtual at time T, RJ is the QoS

for the jth VM, and LBJ is the fitness factor of the jth

VM's load, the suggested technique has k Wolves choose

an under loaded VM with suitable QoS to give tasks to it.

Making a strategic node choice and launching an

attack: After the alpha and beta wolves have finished their

evaluation and confirmation of a node, they will launch an

assault on the game and choose that node as the optimal

one. Figure-5 is a flowchart representation of the

suggested procedure.

4. THE SIMULATION ENVIRONMENT
This new approach was simulated and tested

using CloudSim. It's a free and open-source simulation

toolkit for the cloud. It was developed at the CLOUDS lab

of the University of Melbourne's Department of Computer

and Software Engineering [30]. Data centres, virtual

machines, applications, users, computational resources,

and rules for managing these components are all defined

and managed with the help of the CloudSim tools (e.g.,

scheduling). Users may assemble the pieces to test out

novel cloud-based methods of operation. In addition,

CloudSim may be used to assess the efficacy of tactics

from a variety of perspectives, including cost-benefit

analysis and the reduction of application launch times.

The use of CloudSim is boundless since classes

may be added or removed and it is possible to create and

implement fresh guidelines. CloudSim functions as a set of

modular components from which you may construct your

unique simulation environment. As a consequence,

Cloudsim is not a turnkey tool where you can just adjust

certain settings and then utilise the output in your project.

The different CloudSim layers are shown in Figure-6. At

the simulation's base are cloud resources like servers and

data centres that run throughout the simulation's period.

The cloud services, such as the allocation of resources like

CPUs, RAM, bandwidth, etc., sit on top of this layer. VM

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 941

services and UI frameworks make up the top two levels.

All the tests were run on a Lenovo workstation equipped

with a Core i7 processor running at 4.2 GHz and 16 GB of

main memory.

Figure-5. Flowchart of the proposed method.

Figure-6. The architecture of CloudSim.

4.1 Simulation Data and Parameters

CloudSim was used to simulate cloud computing

at the SaaS level for this investigation. This simulator

allows for the modelling of a virtual setting and the

facilitation of the availability of associated resources. To

cut down on makespan and QoS degradation in cloud

computing environments, the suggested solution aims to

deliver an efficient OGW-based scheduling mechanism.

As you'll see below, we put the suggested technique

through its paces by conducting several experiments to test

it. Experiment one defined a cloud-based data centre with

three hosts. Virtualization was possible on each of these

hosts, as was resource sharing across many VMs. Table-2

lists the specifics of such hosts' software, whereas Table-3

lists the simulation parameters used by OGW methods. As

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 942

the suggested OGW algorithm is a metaheuristic, it was

compared to well-known metaheuristics algorithms such

as the ABC [13], PSO [14], and GA [18].

Table-2. The technical characteristics of the host.

Host ID
Processing

cores

Processing

speed
Mips RAM MB Hard

MB Bandwidth

Mbps

1 4 5000 204,800 1,048,576 102,400

2 2 2500 102,400 1,048,576 102,400

3 1 1000 51,200 1,048,576 102,400

Table-3. The parameters of the algorithm.

Parameters Value

Population size (no. of

solutions)
80

Maximum iterations 100

C1, C2 1.49445

R1, R2
Random numbers between

0 and 1

4.2 The Obtained Results
The makespan results showed that the suggested

approach is much more efficient than the alternatives. The

OGW method is preferable because it completes

processing in less time than competing algorithms and

finds appropriate nodes for load transfer more quickly.

The suggested approach is a QoS/OGW hybrid algorithm.

The OGW algorithm for load balancing was developed

with inspiration from the foraging strategies of Grey

wolves in the wild. In the present investigation, the alpha

wolf first searches the loads that are unrelated to any

service or job and then commands the other wolves to

attack the unrelated loads. The ABC algorithm also

outperformed the others since it can locate the most

appropriate loads throughout the search process. Initial

choices made by the round-robin (RR) scheduling are

crucial to the performance of the honeybee-mating

method. The figure clearly shows that the ABC balancing

approach outperforms the refined GA algorithm. That's

because, unlike the GA algorithm, the ABC method's load

balancing can identify both overloaded and underutilised

virtual machines. Figure-7 provides a clearer example of

this.

The time taken to respond by each of the three

algorithms studied is shown in the figure below. Twenty,

thirty, forty, fifty, sixty, seventy, and eighty jobs have

been designated. One of these criteria is reaction time, and

to find out how long it takes to solve aggregate functions

as a whole, we add up the times it takes for each service.

Taking into account the reaction time parameter, the

preceding graphic shows that the suggested method

performs well. The reaction time diagram in the bee

algorithm begins with the worker bee, who initiates the

search for nectar and then alerts the other bees to its

location through a waggle dance.

Figure-7. The comparison of makespan.

The suggested approach is quite close to the

artificial bee algorithm. Figure-8 provides a clearer

example of this.

The suggested approach demonstrates how

resource use may improve response time and customer

satisfaction. In addition, the strategy may result in the fair

allocation of workload across VM, which boosts the use of

resources at once and shortens the total processing time.

Also, the OGW algorithm is shown to provide superior

outcomes when compared to competing algorithms and to

have faster access to available resources. Clearly shown in

Figure-9 are the outcomes of this strategy.

According to Figure-10, the OGW algorithm has

achieved ideal performance in terms of cost reduction, and

it has been able to lower costs to a greater degree than the

other algorithms while producing simulation results that

are almost identical to those of the other three algorithms.

The cost evaluation index quantifies the amount of money

spent on each virtual machine (VM) by factoring in the

amount of memory, number of processes, size of the

virtual machine, and the amount of bandwidth consumed.

In this scenario, the workload is nearly identical across all

algorithms; the algorithms' conditions, number, and

hardware features are also comparable; and the algorithms'

running times are comparable; therefore, the algorithm

that uses VM less is deemed good because it can complete

its tasks with the fewest resources.

According to the gathered data, the suggested

method is less flexible than GA, PSO, and ABC. 100

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 943

iterations of the GA, PSO, and ABC algorithms were used

to evaluate the proposed algorithm's convergence.

Convergence was tested over 80 tasks using 200 service

candidates per job over 100 iterations, as shown in Figure-

11.

Figure-8. The comparative diagram of response time.

Figure-9. The diagram of resource utilization.

Figure-10. The average costs of running a VM are

according to the number of tasks.

Figure-11. The convergence diagram for 80 tasks in

100 iterations.

5. ANALYSIS OF RESULTS

There are a variety of load-balancing techniques

that have been suggested for use in hybrid cloud, grid, and

distributed computing settings. Of course, there are

benefits and drawbacks to everything. The present

research makes use of an OGW algorithm based on QoS to

balance loads. The purpose of the research was to find the

optimal load distribution among the available resources,

ensuring that no resources were overloaded or

underloaded. For this reason, the QoS and the load of each

resource were calculated, \ and sand load balancing was

maintained using the OGW method. The application was

transferred to a server with a better quality of service and

fewer requests. The efficiency and effectiveness of the

cloud system were improved thanks to the novel approach

used in the present research to maintain load balancing

based on the QoS. The simulation results also showed that

the suggested technique is more stable than the competing

methods, with less time spent on tasks and less imbalance.

The suggested technique was studied and compared to

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 944

other approaches; the findings confirmed that it is the

optimal algorithm. The OGW method outperformed the

ABC, GA, and PSO algorithms across all metrics thanks to

its weighted search and careful consideration of each

node's contribution. In contrast to previous research, this

one prioritises picking a virtual machine (VM) that isn't

overworked and one that is most amenable to users' needs.

The suggested solution improved the VMs' workload

distribution by adjusting the load balancing algorithm.

Because of this, more resources were put to use than

before. The use of the heuristic algorithms and the

suggested strategy resulted in time and cost savings

compared to other approaches (see Figure-12).

Makespan was also studied, and it was

discovered that the suggested approach is much better than

the alternatives.

That is to say, the alpha wolves go for the

machines that are less busy first. After deciding where to

send the cargo, they give the CH the go-ahead to do so.

Figure-13 shows the average outcomes.

Response time was also studied, and it was

shown that the algorithm had the potential to provide

better outcomes than other approaches. While the ABC

algorithm produced a faster and more competitive solution

than the one suggested in this research, the OGW

algorithm outperformed the others in 80 challenges. The

typical outcomes are shown in Figure-14.

Figure-12. The average costs for different 80 tasks.

Figure-13. The average results of makespan in 80 tasks.

Figure-14. The average results of response time in

80 tasks.

Table-4. Results for power consumption and throughput using no of tasks.

No .of Tasks 80 90 100

No. of Iterations 100 110 120

Power Consumption 0.000527 0.000117 0.000049

Throughput 0.063777 0.046179 0.09515

Memory Utilization 0.000586 0.002352 0.001166

Server load 1.31 1 2.32

Turn Around time 0.422224 0.181626 2.367719

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 945

6. CONCLUSIONS
The capacity to come up with a wide variety of

novel and effective approaches to resolving problems is

what we mean when we talk about creativity and

innovation. In this article, we explored the idea of load

balancing as a means of discovering nodes whose service

values are below the threshold at which they begin

searching for prey in their surroundings. Before sending

his pack after them, the leader wolf checks out the services

that aren't essential to completing any particular mission.

As compared to other approaches, the outcomes produced

by this technique were superior. The suggested approach

effectively decreases task response times while increasing

makespan usage during load balancing. Consider the

following for future research that aims to build upon and

refine the present study's findings. Thus, future research

should focus on providing a metaheuristic that makes use

of machine learning and the MCDM approach. The

suggested solution might also benefit from the deployment

of data centres and virtual machines. Additionally, they

might encompass more than just dependability, including

issues like usability, safety, and scalability. In the future,

dependent activities will do load balancing dynamically.

REFERENCES

[1] Haji L. M., Ahmad O. M., Zeebaree S. R., Dino H. I.,

Zebari R. R., Shukur H. M. 2020. Impact of cloud

computing and the internet of things on the future

internet. Technol Rep Kansai Univ. 62(5): 2179-2190.

[2] Kumar J., Rani A., Dhurandher S. K. 2020.

Convergence of user and service provider

perspectives in mobile cloud computing environment:

taxonomy and challenges. Int J Commun Syst. 33(18):

e4636.

[3] Goldberg D. W., Bowlick F. J., Stine P. E. 2021.

Virtualization in Cyber GIS instruction: lessons

learned constructing a private cloud to support

development and delivery of a WebGIS course. J

Geogr High Educ. 45(1): 128-154.

[4] Sefati S., Abdi M., Ghafari A. 2021. Cluster‐based

data transmission scheme in wireless sensor networks

using black hole and ant colony algorithms. Int J

Commun Syst. https://doi.org/10.1002/dac. 4768

[5] Eswari S., Manikandan S. Competent data

transmission function in cloud computing with high

probability aesthetic.

[6] Hayyolalam V., Pourghebleh B., Kazem A. A. P.,

Ghafari A. 2019. Exploring the state-of-the-art service

composition approaches in cloud manufacturing

systems to enhance upcoming techniques. Int. J Adv

Manuf Technol. 105(1): 471-498.

[7] Golchi M. M., Saraeian S., Heydari M. 2019. A

hybrid of firefly and improved particle swarm

optimization algorithms for load balancing in cloud

environments: performance evaluation. Comput Netw.

162: 106860.

[8] Alicherry M., Lakshman T. 2013. Optimizing data

access latencies in cloud systems by intelligent virtual

machine placement. In: 2013 Proceedings IEEE

INFOCOM, 2013. IEEE. pp. 647-655.

[9] Nurmi D. et al. 2009. The eucalyptus open-source

cloud-computing system. In: 2009 9th IEEE/ ACM

International Symposium on Cluster Computing and

the Grid, 2009. IEEE. pp. 124-131.

[10] Zanbouri K., Jafari Navimipour N. 2020. A cloud

service composition method using a trust-based

clustering algorithm and honeybee mating

optimization algorithm. Int J Commun Syst. 33(5):

e4259.

[11] Sefati S., Navimipour N. J. 2021. A QoS-aware

service composition mechanism in the Internet of

Things using a hidden Markov model-based

optimization algorithm. IEEE Internet Things J.

https:// doi.org/10.1109/JIOT.2021.3074499

[12] Tikhamarine Y., Souag-Gamane D., Ahmed A. N.,

Kisi O., El-Shafe A. 2020. Improving artifcial

intelligence model accuracy for monthly streamflow

forecasting using Optimization of Gray Wolves

(OGW) algorithm. J Hydrol. 582: 124435.

[13] Kruekaew B., Kimpan W. 2020. Enhancing of

artificial bee colony algorithm for virtual machine

scheduling and load balancing problem in cloud

computing. Int. J Comput Intell. Syst. 13(1): 496-510.

[14] Devaraj A. F. S., Elhoseny M., Dhanasekaran S.,

Lydia E. L., Shankar K. 2020. Hybridization of

Firefly and Improved multi-objective particle swarm

optimization algorithm for energy efficient load

balancing in cloud computing environments. J Parallel

Distrib Comput. 142: 36-45.

[15] Lilhore U. K., Simaiya S., Maheshwari S., Manhar A.,

Kumar S., Cloud performance evaluation: hybrid load

balancing model based on modified particle swarm

optimization and improved metaheuristic firefly

algorithms.

https://doi.org/10.1002/dac.%204768

 VOL. 19, NO. 14, JULY 2024 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 946

[16] Kokilavani T., Amalarethinam D. G. 2011. Load

balanced min-min algorithm for static meta-task

scheduling in grid computing. Int J Comput Appl.

20(2): 43-49.

[17] Goyal S. K., Singh M. 2012. Adaptive and dynamic

load balancing in the grid using ant colony

optimization. Int. J. Eng. Technol. 4(4): 167-174.

[18] Makasarwala H. A., Hazari P. 2016. Using genetic

algorithm for load balancing in cloud computing. In:

2016 8th International Conference on Electronics,

Computers and Artificial Intelligence (ECAI), 2016.

IEEE. pp. 1-6.

[19] Garg S. K., Yeo C. S., Anandasivam A., Buyya R.

2011. Environment-conscious scheduling of HPC

applications on distributed cloud-oriented data

centers. J Parallel Distrib Comput. 71(6): 732-749.

[20] Buyya R., Yeo C. S., Venugopal S., Broberg J.,

Brandic I. 2009. Cloud computing and emerging IT

platforms: vision, hype, and reality for delivering

computing as the 5th utility. Futur Gener Comput

Syst. 25(6): 599-616.

[21] Kashyap D., Viradiya J. 2014. A survey of various

load balancing algorithms in cloud computing. Int. J.

Sci. Technol. Res. 3(11): 11-119.

[22] Smimite O., Afdel K. 2020. Containers placement and

migration on a cloud system. arXiv: 2007. 08695.

[23] Hao F., Lakshman T., Mukherjee S., Song H. 2009.

Enhancing dynamic cloud-based services using

network virtualization. In: Proceedings of the 1st

ACM Workshop on Virtualized Infrastructure

Systems and Architectures. pp. 37-44.

[24] Dillon T., Wu C., Chang E. 2010. Cloud computing:

issues and challenges. In: 2010 24th IEEE

International Conference on Advanced Information

Networking and Applications, 2010. IEEE. pp. 27-33.

[25] Bari M. F., Zhani M. F., Zhang Q., Ahmed R.,

Boutaba R. 2014. CQNCR: optimal VM migration

planning in cloud data centers. In: 2014 IFIP

Networking Conference, 2014. IEEE. pp. 1-9.

[26] Ashouraei M., Khezr S. N., Benlamri R., Navimipour

N. J. 2018. A new SLA-aware load balancing method

in the cloud using an improved parallel task

scheduling algorithm. In: 2018 IEEE 6
th

 International

Conference on Future Internet of Things and Cloud

(FiCloud), 2018. IEEE. pp. 71-76.

[27] Ghobaei-Arani M., Rahmanian A. A., Souri A.,

Rahmani A. M. 2018. A moth-fame optimization

algorithm for web service composition in cloud

computing: simulation and verification. Softw Pract

Exp. 48(10): 1865-1892.

[28] Mirjalili S., Mirjalili S. M., Lewis A. 2014. Grey wolf

optimizer. Adv Eng. Softw. 69: 46-61.

[29] Betka A., Terki N., Toumi A., Dahmani H. 2020.

Grey wolf optimizer-based learning automata for

solving block matching problems. SIViP. 14(2): 285-

293.

[30] Mishra S. K., Sahoo B., Parida P. P. 2020. Load

balancing in cloud computing: a big picture. J King

Saud Univ. Comput. Inf. Sci. 32(2): 149-158.

[31] Siddiqi M. H., Alruwaili M., Ali A., Haider S. F., Ali

F., Iqbal M. 2020. Dynamic priority-based efficient

resource allocation and computing framework for

vehicular multimedia cloud computing. IEEE Access.

8: 81080-81089.

