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ABSTRACT 

As the realm of the Internet of Things (IoT) continues to evolve, niche applications such as underwater 

communication are gaining momentum both in academic and industrial spheres. Within this context, the utilization of 

multiple-input multiple-output (MIMO) technology holds immense importance for bolstering channel capacity in 

underwater acoustic (UWA) communication setups. Accurately forecasting channel responses emerges as a critical aspect 

for ensuring optimal system functionality. This paper introduces a streamlined model for predicting channel impulse 

responses (CIRs) tailored specifically for UWA MIMO communication scenarios. Dubbed the small adaptive bidirectional 

gated recurrent unit (ABiGRU) network, our model exhibits the ability to discern channel characteristics without 

necessitating intricate knowledge of internal channel properties. The proposed approach leverages short-term CIR data for 

real-time training, subsequently enabling accurate predictions to track the dynamic nature of UWA channels. To validate 

our methodology, we integrate space-time block coding (STBC) with minimum mean square error (MMSE) pre-

equalization within the UWA MIMO framework. Our simulations demonstrate the practicality of this scheme, showcasing 

low bit-error rates (BER). Furthermore, we conduct an extensive evaluation of our ABiGRU network's prediction accuracy 

vis-a-vis the widely employed MMSE algorithm and other recurrent neural network (RNN) variants like gated recurrent 

units (GRU) and long short-term memory (LSTM). Real-world experiments in UWA MIMO settings underscore the 

superior performance of our ABiGRU network, suggesting its potential for cost-efficient deployment in underwater IoT 

sensor networks. 
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1. INTRODUCTION 

In the realm of underwater communications, the 

ability to predict channel conditions accurately holds 

paramount importance for ensuring reliable and efficient 

data transmission. The dynamic and harsh underwater 

environment poses significant challenges to conventional 

communication systems, necessitating innovative 

approaches to overcome these obstacles. Multiple Input 

Multiple Output (MIMO) New-age systems have emerged 

as a promising solution, utilizing spatial diversity to 

bolster communication performance. 

However, the effectiveness of MIMO systems 

critically depends on the accurate prediction of underwater 

channel characteristics. Traditional channel prediction 

techniques often fall short in capturing the dynamic nature 

of underwater channels, characterized by multipath 

propagation, Doppler shifts, and temporal variations. As a 

result, there is a pressing need for advanced prediction 

methods tailored specifically for underwater Multiple 

input multiple output communications. 

This study introduces a pioneering method 

employing Adaptive Bidirectional Gated Recurrent Units 

(GRU) for channel prediction within underwater MIMO 

systems. GRU, a subtype of recurrent neural networks 

(RNNs), demonstrates proficiency in modeling sequential 

data and capturing temporal dependencies, making it well-

suited for predicting time-varying channel conditions. By 

incorporating bidirectional processing and adaptability 

mechanisms, our proposed model aims to enhance 

prediction accuracy and robustness in a challenging 

underwater environment. 

This study aims to achieve two primary 

objectives: firstly, to establish a robust channel prediction 

framework using Adaptive Bidirectional GRU specifically 

designed for underwater MIMO communications, and 

secondly, to assess the effectiveness of the proposed 

method compared to existing prediction techniques 

through extensive simulations and real-world experiments. 

By fulfilling these objectives, our goal is to advance 

underwater communication systems, thereby enhancing 

reliability and throughput in real-world deployment 

scenarios. 

In the following sections, we will delve deeper 

into the methodology employed for model development, 

detailing the architecture of the Adaptive Bidirectional 

GRU and the training process. Furthermore, we present 

experimental results and performance evaluations, 

followed by discussions on the implications of our 

findings and potential avenues for future research. 

Through this research endeavour, we strive to pave the 

way for enhanced underwater communication capabilities, 

addressing the burgeoning demands of diverse 

applications ranging from ocean exploration to underwater 

surveillance and resource monitoring. 

 

2. BACKGROUND 
The idea behind this project originates from the 

crucial requirement for strong and efficient wireless 
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communication technologies to cater to the needs of 

modern applications. These include tasks like high-speed 

data transfer and the rise of autonomous systems. MIMO 

technology holds the potential to significantly enhance 

both spectral efficiency and reliability while incorporating 

RNNs can offer advanced signal processing capabilities. 

Understanding how these techniques work together is 

essential for advancing wireless communication 

technologies. In this project, we aim to explore how 

Multiple Input Multiple Output (MIMO) technology and 

Recurrent Neural Networks (RNNs) interact within 

wireless communications. Our motivation comes from the 

growing importance of dependable and efficient 

communication systems in various applications today. 

Whether it's the need for fast data transfer or the 

increasing use of IoT devices, innovative solutions are 

needed to improve efficiency and reliability. MIMO 

technology shows promise by using multiple antennas for 

simultaneous data transmission and reception, which 

boosts overall system performance. Combining this with 

RNNs adds sophisticated signal processing capabilities, 

making communication systems more adaptive and 

intelligent. Our project focuses on finding new ways to 

improve wireless communication systems by integrating 

MIMO technology and RNNs seamlessly. This exploration 

is driven by the increasing demands of modern 

applications, which require robust, efficient, and adaptable 

communication frameworks. With the rise of IoT and 

autonomous systems, there's a greater need for reliable 

wireless communication. By studying how MIMO 

technology and RNNs work together, we aim to discover 

new methods and insights that can push communication 

systems forward. Through rigorous experimentation, 

analysis, and validation, our aspiration is to contribute to 

the advancement of communication technologies, 

fostering a more interconnected and intelligent world. 

MIMO Systems: 

MIMO systems harness the power of multiple 

antennas at both the transmitter and receiver ends to 

enhance communication performance through the 

utilization of spatial diversity. This diversity leads to 

increased data rates and enhanced link reliability. 

Recurrent Neural Networks (RNNs): 

RNNs, or recurrent neural networks, are a 

category of artificial neural networks specifically 

engineered to handle sequential data. Their design makes 

them highly effective for tasks that involve analyzing 

time-series data and processing signals. In the realm of 

wireless communications, RNNs find application in tasks 

such as equalization, channel estimation, and interference 

cancellation. 

 

3. EXISTING METHODS 
Several methods for predicting channels in 

underwater acoustic communications have been proposed, 

each with its own set of limitations. The minimum mean 

square error (MMSE) algorithm, for instance, is effective 

in predicting frequencies in MIMO-OFDM systems but 

comes with a high computational cost due to the necessity 

of large matrix inversions, rendering it impractical for 

many applications. On the other hand, the recursive least 

squares (RLS) algorithm offers an adaptive approach to 

calculating the parameters of a linear predictor in the time 

domain, providing reasonable tracking capability with a 

simple design. However, this method of channel impulse 

response (CIR) prediction only takes into account the 

magnitude of channel taps, neglecting the variation in 

channel delay. This limitation is particularly problematic 

in underwater acoustic networks with extensive sensor 

node deployments, such as the Internet of Underwater 

Things (IoUT). 

 

4. ANTICIPATED SYSTEM 
We introduce a novel, compact, and adaptive 

bidirectional gated recurrent unit (ABiGRU) network 

designed to capture real-time channel information in 

underwater acoustic (UWA) environments. Our model 

utilizes short-term channel impulse responses (CIRs) 

obtained from channel estimation for online training, 

enabling it to predict CIRs and effectively track the 

dynamic nature of UWA channels over time. To enhance 

overall communication performance, we propose a 

combination of space-time block coding (STBC) and 

minimum mean square error (MMSE) pre-equalization, 

leveraging the predicted CIRs. Numerical analysis reveals 

that STBC significantly enhances the performance of 

multiple input multiple output (MIMO) systems, 

particularly in noisy and fading channels. By transmitting 

multiple copies of the signal stream over multiple 

hydrophones with time delay and phase shifts, we achieve 

notable diversity gains, leading to improved error rates 

and reliability. 

 

5. RESULTS AND CONCLUSIONS 

 

Overall Results 

 

 
 

Figure-1. Comparison of MMSE, LSTM, GRU, and 

ABIGRU’s MSE vs prediction index. 

 

In Figure-1, we compare the Mean Squared Error 

(MSE) of MMSE, LSTM, GRU, and ABiGRU models 

against the prediction index. It is evident that when 

keeping the prediction index constant, ABiGRU exhibits 

the lowest MSE among the models. A lower MSE 

indicates a more stable system, highlighting ABiGRU's 

superior performance compared to others. The MMSE 

approach hinges on an estimated signal-to-noise ratio 
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(SNR), which may often diverge from the actual SNR. 

This discrepancy in estimated values can lead to 

significant deviations in performance. Moreover, as we 

base our CIR predictions on the variance between 

predicted CIRs at the current and preceding time steps, 

any prediction errors accumulate over time, especially 

with rising prediction indexes. 

 

Table-1. 
 

MODEL MSE 
Prediction 

index 

MMSE 0.00403 8 

LSTM 0.002614 8 

GRU 0.002287 8 

ABIGRU 0.002178 8 

 

 
 

Figure-2. Effects of the number of units in the  

hidden layer. 

 

Examining Figure-2, we explore the impact of 

varying the number of units (Nn) within the proposed 

ABiGRU network on prediction errors. The graphical 

representation illustrates a decline in Mean Squared Error 

(MSE) with an increase in the number of units in the 

neural network. Consequently, guided by these results, we 

elect to employ 256 units, provided ample hardware 

resources are at our disposal. 

 

 
 

Figure-3. Effect of the length of training sequences Nt. 

 

Figure-3 illustrates the comparison of Mean 

Squared Error (MSE) against the prediction index for 

ABiGRU, varying the length of the sequence. Notably, the 

MSE decreases with longer sequences. Specifically, the 

ABiGRU model with Nt = 500 demonstrates superior 

performance, leveraging a larger pool of training samples. 

Broadly speaking, augmenting the number of training 

samples typically leads to improved performance of the 

ABiGRU model during the training phase. 

 

 
 

Figure-4. Performance comparison with different  

numbers of the known length p based on the  

channel measurement data. 

 

Figure-4 illustrates how the known history length 

(P) influences prediction errors based on channel 

measurement data. At prediction index 10, the Mean 

Squared Errors (MSEs) for ABiGRU are 0.0044 for P=10, 

0.0042 for P=20, 0.0039 for P=30, and 0.0036 for P=40. 

The results indicate a noticeable enhancement in 

performance with an increase in the known history length 

(P). 
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Figure-5. BER comparison of different RNNs. 

 

Figure-5 illustrates the assessment of predicted 

Channel Impulse Responses (CIRs) utilizing adaptive 

LSTM, GRU, and ABiGRU models in the context of the 

STBC-MMSE pre-equalization scheme. The outcomes 

distinctly reveal the superior performance of the ABiGRU 

model compared to the others, showcasing the lowest Bit 

Error Rate (BER) values across diverse Signal-to-Noise 

Ratio (SNR) levels in a 2x2 Underwater Acoustic (UWA) 

MIMO system. Moreover, the BER derived from the 

GRU-based predictor surpasses that of the LSTM-based 

predictor, underscoring the efficacy of varied neural 

network architectures in this context. 

 

Table-2. 
 

MODEL BER SNR 

LSTM 0.004495 4 

GRU 0.001334 4 

ABIGRU 0.008894 4 

 

 
 

Figure-6. 

 

Figure-6 illustrates plots comparing different 

equalization methods based on Bit Error Rate (BER) 

values versus Signal-to-Noise Ratio (SNR). The 

comparison encompasses the MMSE pre-equalization 

method with M = 2, N = 1, the STBC-MMSE pre-

equalization scheme with M = 2, N = 1, and the STBC-

MMSE pre-equalization scheme with M = 2, N = 2. Each 

scheme's performance exhibits distinct BER values, with 

the aim of achieving lower BER values for a reliable 

model. Particularly noteworthy is the STBC-MMSE 

scheme with M = 2, N = 2, demonstrating the lowest BER 

rate among the compared methods, thereby indicating its 

effectiveness in enhancing system reliability. 

 

 
 

Figure-7. 

 

Figure-7 illustrates the loss curves versus epoch 

for different training models. Even with all three models 

having an equal number of units in the hidden layer, 

LSTM shows the highest loss, measured by Mean 

Absolute Error (MAE), followed by GRU with a 

moderately lower loss than LSTM. Notably, our proposed 

model, ABiGRU, achieves the lowest loss compared to all 

other training models. 

 

 
 

Figure-8. 
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The statistical model developed for characterizing 

underwater acoustic (UWA) channels is a sophisticated 

framework that accounts for various physical phenomena 

and environmental factors influencing communication in 

underwater environments. These channels are inherently 

complex, with characteristics that evolve dynamically over 

time due to factors such as water depth, temperature, 

salinity, and underwater terrain. 

The model incorporates a path loss model to 

estimate the attenuation of signal strength as it propagates 

through water, considering factors like distance traveled 

and frequency of the transmitted signal. Additionally, 

Rayleigh fading is integrated to simulate the random 

fluctuations in signal strength caused by multipath 

propagation, where signals take multiple paths to reach the 

receiver due to reflections and scattering from underwater 

surfaces and objects. 

Small-scale effects, such as scattering and 

Doppler shifting induced by the motion of underwater 

objects or vehicles, contribute to rapid variations in the 

received signal's strength and phase. On the other hand, 

large-scale effects encompass changes in environmental 

conditions over larger spatial scales, such as variations in 

water temperature and salinity, which can affect the 

overall propagation characteristics of the channel. 

By combining these models, researchers gain a 

comprehensive understanding of the intricate behavior of 

UWA channels, allowing for the development of 

communication systems that are more robust and reliable 

in underwater environments. Figure-8 provides visual 

insights into the simulated Channel Impulse Responses 

(CIRs), showing how the characteristics of the channel 

change over time, which is crucial for designing effective 

communication protocols and signal processing algorithms 

tailored to underwater applications. 

 

 
 

 
 

Figure-9. 
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In Figure 9, we observe scattered plots comparing 

constellation diagrams derived from different pre-

equalization methods. These methods include the MMSE 

pre-equalization method with M = 2, N = 1, the STBC-

MMSE pre-equalization scheme with M = 2, N = 1, and 

the STBC-MMSE pre-equalization scheme with M = 2, N 

= 2. Each plot divides symbols into four distinct regions 

across all schemes, reflecting variations in the received 

signal's quality and integrity. 

Interestingly, the STBC-MMSE pre-equalization 

scheme outperforms the MMSE pre-equalization scheme, 

showcasing superior symbol recovery quality. 

Specifically, symbols obtained using the STBC-MMSE 

pre-equalization scheme exhibit fewer errors and more 

distinct constellations, indicating enhanced reliability and 

robustness in symbol transmission. Notably, the STBC-

MMSE pre-equalization scheme with M = 2, N = 2 

demonstrates the most promising performance among the 

evaluated schemes, characterized by the fewest error 

symbols and maximally separated constellations. These 

findings underscore the effectiveness of the STBC-MMSE 

pre-equalization scheme, particularly when configured 

with multiple antennas at both the transmitter and receiver 

ends, in mitigating channel impairments and optimizing 

symbol recovery in practical communication scenarios. 

 

CONCLUSIONS 

In this paper, we introduce a novel and cost-

efficient online channel predictor designed for time-

varying Underwater Acoustic (UWA) Multiple-Input 

Multiple-Output (MIMO) channels. Our proposed 

ABiGRU model achieves precise real-time predictions of 

Channel Impulse Responses (CIRs) by utilizing preceding 

CIRs obtained from channel estimation for online training. 

Subsequently, the trained model is deployed for CIR 

prediction, effectively tracking time-varying channels in 

the operational ABiGRU network. Furthermore, we 

validate our proposed model through realistic in-field 

UWA MIMO communication experiments and numerical 

simulations, demonstrating its practicality and consistency. 

Additionally, we compare the performance of the 

ABiGRU network with other algorithms/networks such as 

adaptive Minimum Mean Square Error (MMSE), Long 

Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU). Our proposed ABiGRU network exhibits the 

lowest Mean Squared Error (MSE) value with rapid 

convergence across different prediction indexes. 

Moreover, analysis of channel measurement data indicates 

that the ABiGRU model outperforms MMSE, LSTM, and 

GRU in terms of average MSE and Bit Error Rate (BER). 

Future work will focus on developing Recurrent Neural 

Network (RNN) models for underwater collaborative 

communications and positioning, exploring UWA MIMO-

Orthogonal Frequency Division Multiplexing (OFDM) 

systems, and optimizing design considerations regarding 

complexity and performance. 
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