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ABSTRACT 

Diabetic retinopathy is an ocular disorder that has the potential to result in visual impairment and complete loss of 

vision in those diagnosed with diabetes. This illness affects the retinal blood vessels inside the light-sensitive tissue layer at 

the posterior of the eye, known as the retina. This paper presents a complete approach to diagnosing and categorizing 

diabetic retinopathy using deep learning models. A lightweight Convolutional Neural Network (CNN) is used to detect 

diabetic retinopathy in fundus images. This CNN has been developed to have fewer parameters and calculations, making it 

suited for resource-constrained environments while retaining decent performance. The categorization of diabetic 

retinopathy is carried out with the help of EfficientNet. This model uses an innovative compound scaling approach to strike 

a balance between the model's depth, width, and resolution. As a result, it maximizes computing efficiency while 

preserving high accuracy. The proposed detection model obtained an accuracy of 95%, and the classification model 

produced an accuracy of 84%. 
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1. INTRODUCTION 

DR is a consequential ocular ailment from 

diabetes, especially in persons with challenges maintaining 

optimal glycemic control. This disorder is characterized by 

the adverse consequences of increased glucose levels in 

the bloodstream on the microvascular network inside the 

retina, which is the photosensitive tissue situated at the 

posterior region of the ocular organ. Over a prolonged 

duration, this detrimental effect might give rise to ocular 

complications, such as impaired visual acuity, the 

manifestation of floaters, and, in extreme instances, total 

loss of eyesight. To efficiently manage and mitigate the 

occurrence of DR [1], it is essential to undertake periodic 

ocular examinations and diligently regulate glycemic 

management. Early identification and management are 

crucial in mitigating the likelihood of visual impairments 

in those affected by diabetes. 

Identifying and categorizing phases of DR, a 

vision-threatening consequence of diabetes is a crucial 

field of study and medical application. By utilizing 

sophisticated imaging modalities, including fundus 

imaging, optical coherence tomography, and Machine 

Learning (ML) algorithms, collaborative efforts between 

healthcare practitioners and researchers are underway to 

create automated systems capable of effectively 

identifying DR [2], differentiating between its different 

stages (ranging from mild non-proliferative to severe 

proliferative) [3], and delivering timely interventions. The 

timely identification and categorization of Diabetes 

Patients (DP) play a pivotal role in optimizing healthcare 

interventions and mitigating visual impairment, ultimately 

leading to enhanced healthcare results. 

The detection [4]and classification [5] of DR 

have great importance due to their pivotal role in promptly 

diagnosing and treating a severe disease linked to diabetes. 

DR is a widely seen cause of vision impairment on a 

worldwide level, mainly affecting those who have been 

diagnosed with diabetes [6]. This problem's prompt and 

precise identification is crucial to avoid permanent visual 

impairment. Through the utilization of sophisticated 

imaging methodologies, ML algorithms, and Artificial 

Intelligence (AI) healthcare practitioners can expeditiously 

discern the ailment's advancement, hence enabling prompt 

intervention and customized therapeutic strategies. The 

identification and categorization of DR include various 

techniques within medical imaging and computer vision 

[7]. The use of retinal images is a common practice in 

these methodologies, including the application of 

conventional image processing methods and sophisticated 

ML algorithms. Standard methodologies encompass 

various strategies, such as image pre-processing to 

enhance the quality of features, the segmentation of blood 

vessels, the identification of lesions, and the utilization of 

DL models, specifically CNNs, to automate the evaluation 

and classification of the severity of DR [8]. 

The current techniques used in detecting and 

classifying DR encounter a range of research obstacles 

that want prompt attention. It is essential to enhance the 

robustness and accuracy of automated screening 

procedures since existing algorithms often exhibit 

deficiencies in sensitivity and specificity. Moreover, 

incorporating sophisticated DL architectures, such as 

CNNs and Recurrent Neural Networks (RNNs), with 

diverse and enormous datasets presents a significant and 

daunting obstacle.  

Furthermore, there is a determined lack of real-

time, cost-effective, and easily accessible screening 

methods, particularly in settings with low resources. This 

paper presents a DR detection and classification model 

using DL. Section 1 presents the paper's introduction; 
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section 2 presents the literature survey, section 3 presents 

the architectures in the proposed model, section 4 presents 

the experimental results, and section 5 conclusions and 

future scope. 

 

2. LITERATURE SURVEY 

Zubair Khan et al [9] focused on enhancing the 

efficacy of training and the convergence of models in 

identifying various stages of DR by reducing trainable 

characteristics. A DL model known as VGG-NiN has been 

devised to accomplish this objective. This model 

integrates the VGG16 model with the spatial pyramid 

pooling layer (SPP) and network-in-network (NiN) 

architecture. This model exhibits strong nonlinearity and 

scale invariance. Nikos Tsiknakis et al [10] presented a 

comprehensive examination of DL methods across the 

many stages of the DR diagnosis process, specifically 

focusing on using fundus images. In this discourse, the 

authors examine various facets of the pipeline 

encompassing the utilization of datasets widely employed 

within the research community. Manisha Saini et al [11] 

conducted a comprehensive comparison study on many 

advanced techniques used on three benchmark datasets in 

diabetic retinopathy: Kaggle DR Detection (KDRD), 

IDRiD, and Diagnose Diabetic Retinopathy (DDR). This 

research focused on evaluating the performance of these 

approaches in tasks such as classification, object 

identification, and segmentation. 

Recep E. Hacisoftaoglu et al [12] focused on 

constructing an automated model for detecting DR in 

smartphone retinal photos. To do this, the authors use a 

DL methodology, specifically the ResNet50 network. The 

present work first used the well-recognized AlexNet, 

GoogLeNet, and ResNet50 architectures, using the 

transfer learning methodology. Imran Qureshi et al [13] 

presented a novel and advanced multi-layer framework for 

active DL (ADL) with the primary objective of automating 

the detection and classification of different phases of DR. 

The authors used a CNN model to construct the ADL 

system, automating the feature extraction process instead 

of depending on manually engineered features. Li 

Xuechen et al [14] provided an automated diagnostic tool 

for the early detection of DR via Optical Coherence 

Tomography (OCT) imaging. The proposed method 

focuses on diagnosing DR in both grades 0 and grade 1. 

Mohammad Z. Atwany et al [15] 

comprehensively examined and evaluated the most 

advanced DL techniques in supervised learning, self-

supervised learning, and Vision Transformer setups. The 

study also introduces a novel application of these 

approaches for classifying and detecting retinal fundus 

images. S. Gayathri et al [16] introduced an innovative 

methodology for the automated assessment of DR via the 

use of DL and ML algorithms. This strategy involves 

extracting distinctive features from fundus images and 

then categorizing them based on their respective levels of 

severity. Jyostna Devi Bodapati et al [17] presented a 

brand-new Deep Neural Network (DNN) architecture in 

this work that incorporates a gated-attention mechanism. 

This architecture was primarily designed to make it easier 

to DDR automatically. In addition, the model includes 

gated attention blocks, which allow it to maximize 

attention to the retinal picture's lesion areas and minimize 

it to the non-lesion portions. 

Ramzi Adriman et al [18] suggested a 

comprehensive approach to identifying and categorizing 

DR. The methodology used in this study consists of two 

primary stages. Local binary patterns (LBP) extract texture 

features in the first stage. Subsequently, in the second 

stage, an in-depth analysis is conducted on contemporary 

DL approaches for detection and classification tasks. 

 

3. PROPOSED METHOD 
Using DL to examine DR signifies a noteworthy 

progression within medical diagnostics. This novel 

methodology uses DL methodologies to autonomously 

identify and evaluate DR, a prevalent and possibly sight-

threatening condition associated with diabetes. DL 

algorithms have shown exceptional accuracy in identifying 

minor anomalies and classifying the severity of DR by 

analysing digitized retinal images. 

This technique has several significant advantages. 

First and foremost, this technology facilitates the prompt 

identification of DR, a condition of utmost importance in 

promptly intervening and providing therapy to mitigate the 

risk of visual impairment. Furthermore, DL-based analysis 

demonstrates a notable level of efficacy, enabling the 

expeditious examination of a substantial volume of 

patients within a limited timeframe. In addition to 

conserving healthcare resources, the quick provision of 

essential eye care to persons with diabetes is also 

guaranteed. 

 

3.1 Diabetic Retinopathy Detection  

The DDR involves the identification and 

evaluation of a vision-threatening disorder known as DR, 

which is associated with diabetes. The framework of the 

proposed method to detect DR is depicted in Figure-1. 
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Figure-1. Proposed method structure for DR detection. 

 

The procedure encompasses diverse medical 

imaging modalities, including retinal photography and 

Optical Coherence Tomography (OCT), to get intricate 

visual representations of the retina. Subsequently, 

healthcare experts or algorithms using Artificial 

Intelligence (AI) scrutinize these images to detect 

irregularities, including but not limited to 

microaneurysms, hemorrhages, and alterations in retinal 

blood vessels. The earlier identification of DR is essential 

to mitigate the risk of visual impairment and provide 

prompt intervention through therapeutic measures such as 

laser therapy or injections. Ultimately, this improves the 

overall management of ocular issues associated with 

diabetes. 

 

3.1.1 Convolutional neural network  
CNN is a DNN developed expressly for 

processing and interpreting grid-like data, such as images 

photos, and videos. CNNs have seen significant 

advancements and have emerged as the key components 

for various computer vision tasks, including image 

classification, object identification, and image 

segmentation. CNNs are built with several layers, each of 

which fulfills a distinct function within the architecture of 

the network as a whole. 

 

3.2 Diabetic Retinopathy Classification 

The classification of DR plays a pivotal role in 

identifying and managing diabetic ocular pathology. The 

procedure systematically categorizes the degree and type 

of retinal damage caused by diabetes, often assessed using 

various imaging techniques like fundus imagery or optical 

OCT.  

The categorization system often encompasses 

many phases, including mild, moderate, severe, and 

proliferative diabetic retinopathy. The existence and 

intensity of particular retinal abnormalities, such as 

microaneurysms, hemorrhages, exudates, and 

neovascularization, determine these stages. This 

classification system assists healthcare professionals in 

identifying suitable treatment and monitoring approaches 

for patients. The framework of the proposed method for 

the Diabetic retinopathy classification is shown in Figure-

2. 
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Figure-(a) EfficientNet Architecture                             Figure-(b) MBConv Block 

 

Figure-2. Proposed method structure for DR classification. 

 

3.2.1 EfficientNetB3 

EfficientNetB3 constitutes CNN architecture, a 

constituent member of the EfficientNet model family. The 

architecture of this system prioritizes excellent efficiency 

in terms of processing resources and model size while still 

attaining exceptional performance on a range of computer 

vision applications. This paper contains a detailed 

explanation of the stages and components of the 

EfficientNetB3 architecture. 

EfficientNetB3, like other CNN, takes an input 

image as its initial input. The input picture undergoes a 

sequence of Convolutional layers. The layers in question 

engage in the feature extraction process by using filters on 

the input picture, enabling the detection of patterns and 

features across various scales. One of the key innovations 

in the EfficientNet family is using a compound scaling 

factor to determine the number of layers, the width 

(number of channels), and the resolution of the network. 

The scaling factor is a user-defined parameter that 

influences the overall architecture. EfficientNetB3 has a 

specific scaling factor that determines its size and 

capacity. 

Depth-wise separable convolution is used extensively in 

EfficientNetB3. It consists of two main steps:1. Depth-

wise Convolution: In this step, each input channel is 

convolved independently with its own set of filters. 2. 

Pointwise Convolution: In this step, a 1x1 convolution is 

applied to combine the output channels from the previous 

step. EfficientNetB3 uses a modified version of 

MobileNetV2's inverted residual block. This block is used 

for feature extraction and helps reduce the number of 

parameters while maintaining model performance. These 

inverted residual blocks are stacked multiple times to form 

the network's backbone. The number of blocks depends on 

the scaling factor and the desired network depth. 

In this paper progresses through the network, the 

feature maps become smaller spatially but deeper 

regarding channels. These feature maps contain 

increasingly abstract representations of the input image. 

Global average pooling is used in the terminal stage of the 

network. The procedure above computes the mean values 

inside each feature map, generating a vector with a 

constant size. This vector serves as a concise 

representation of the features retrieved from the input 

image. A fully connected or linear layer is added to the 
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global average pooling layer to perform the final 

classification or regression tasks. The number of neurons 

in this layer typically corresponds to the number of output 

classes in a classification task. 

 

3.2.2 MBConvolutional Layer 

In the context of classification tasks, the outcome 

of the fully connected layer is subjected to a softmax 

activation function. This function transforms the network's 

raw scores into probabilities corresponding to each class. 

EfficientNetB3 is trained using a large dataset with labeled 

samples, typically through supervised learning. During 

training, the model's parameters are adjusted to minimize a 

specified loss function, often categorical cross-entropy for 

classification tasks. EfficientNetB3 may undergo fine-

tuning on a smaller dataset tailored to the particular target 

job after pretraining on a large dataset to enhance its 

performance. The EfficientNetB3 architecture is a CNN 

that attains notable efficiency via depth-wise separable 

convolutions, inverted residual blocks, and a compound 

scaling factor. The model's architecture aims to achieve an 

optimal trade-off between its size and performance, 

making it highly suitable for various computer vision 

applications. 

The MobileNet Convolutional Layer, also known 

as a "MBConvolutional Layer," is a specific variant of the 

Convolutional layer that is often used in DL applications 

on mobile devices and in scenarios where computational 

resources are limited. MobileNets, a collection of efficient 

CNN specifically developed for mobile devices, includes 

this element as a fundamental component. Its primary 

purpose is to facilitate tasks such as picture categorization 

and object recognition. MBConvolutional Layers use 

depthwise separable convolutions, which include two 

distinct stages: depthwise convolution, where a single 

filter is applied to each input channel, and pointwise 

convolution, where 1x1 filters merge channel information. 

This design significantly reduces the computational cost 

while maintaining good performance, making MobileNets 

suitable for real-time and low-power applications. 

MBConvolutional Layers often include hyperparameters 

like expansion ratio, kernel size, and output channels, 

allowing for flexibility in network architecture design to 

balance model size and accuracy. 

 

4. EXPERIMENTAL RESULTS 

This section describes the results obtained from 

the simulations conducted using the proposed 

methodology. The Dataset used in this study was sourced 

from Kaggle. The Dataset underwent processing using the 

specified technique. The pictures include retina scan 

images that have undergone Gaussian filtering to identify 

cases of DR. The official Dataset may be accessed from 

the APTOS 2019 Blindness Detection repository. The 

photos are downsized to dimensions of 224x224 pixels to 

facilitate their compatibility with various pre-trained DL 

learning models. The train.csv file given has been used to 

organize the photos into proper folders based on the 

severity/stage of diabetic retinopathy. Figure-3 shows the 

sample images from Dataset. There are five folders (in 

Figure-3: a-e) containing the corresponding pictures. 

0 - No_DR 

1 – Mild 

2 – Moderate 

3 – Severe 

4 - Proliferate_DR 
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Figure-3. Sample images from Dataset. 

 

The evaluation of training and validation loss is 

of utmost importance in the context of ML and DL 

models. The training loss measure assesses the model's 

capacity to acquire knowledge from the training data. In 

contrast, the validation loss metric appraises the model's 

generalization ability by assessing its performance on 

previously unknown data. This procedure facilitates the 

identification of problems such as overfitting and 

underfitting. Achieving a harmonious equilibrium between 

these two measures is crucial in model building. 

Minimizing the training loss does not guarantee improved 

generalization since a significant validation loss implies 

inadequate model performance. Both durable and accurate 

developed using ML models, it is necessary to establish a 

state of equilibrium. 

In ML and DL models, assessing training and 

validation accuracy is paramount. The evaluation of 

training accuracy pertains to the model's proficiency in 

acquiring knowledge from the training dataset. 
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Conversely, validation accuracy is a metric to gauge the 

model's capacity to apply acquired knowledge to novel, 

unseen data, often using a distinct dataset. Ensuring 

equilibrium between these two measurements is of 

paramount significance. High training accuracy coupled 

with poor validation accuracy indicates overfitting, a 

phenomenon in which the model tends to remember the 

training data while encountering difficulties in 

generalizing to new, unseen data. On the other hand, 

inadequate training and validation accuracy indicate a 

condition known as underfitting, in which the model 

cannot accurately capture the inherent patterns within the 

data. To showcase a competent and flexible model, getting 

a substantial level of validation accuracy is crucial while 

concurrently maintaining a commendable level of training 

accuracy. 

 

4.1 Diabetic Retinopathy Detection 
Figure-4 illustrates the training and validation 

loss data of the DR detection algorithm offered. In the first 

epoch, the validation loss is recorded as 0.6820, but the 

training loss is measured as 0.3832. During the fifteenth 

epoch, the validation loss drops to 0.1288, while the 

training loss is recorded as 0.1251. At Epoch 30, the 

validation loss drops to 0.1194, whereas the training loss 

hits 0. 0711. Figure-5 depicts the training and validation 

accuracy of the suggested methodology in the context of 

DR detection.  

 

 
 

Figure-4. Training loss and validation loss. 

 

 
 

Figure-5. Training accuracy and validation. 

 

During the first epoch, the validation accuracy is 

recorded as 0.5073, but the training accuracy is seen to be 

0.8290. By the fifteenth epoch, there has been a notable 

enhancement in the validation accuracy, reaching a value 

of 0.9564. Simultaneously, the training accuracy has also 

shown improvement, rising to 0.9610. At the 30th epoch, 

the validation accuracy attains a value of 0.9600. 

However, the training accuracy surpasses this with a 

higher value of 0.9813. 

The final output of Diabetic is shown in Figure-6. 

 

 DR= Diabetic Retinopathy 

 No DR= No Diabetic Retinopathy  
 

 
 

Figure-6. Output of proposed method of DR detection. 

 

The proposed model is compared with state-of-art 

DL models and a comparative analysis is reported in 

Table-1. 

 

Table-1. Comparative analysis. 
 

Model 
Training 

Accuracy (%) 

Validation 

Accuracy (%) 

CNN 89 69 

VGG 96 76 

EfficientNetB0 98 78 

MobileNet 86 85 

Proposed Model 98 95 

 

Table-1 compares several DL models' training 

and validation accuracy rates. This study examined the 

CNN, VGG, EfficientNetB0, MobileNet, and Proposed 

Model. Each model has unique accuracy metrics. CNN 

had 89% training accuracy and 69% validation accuracy. 

This difference shows it may require tweaks to generalize 

to new data. VGG, another popular model, has 96% 

training accuracy but 76% validation accuracy. This 

discrepancy suggests fine-tuning or adjustments to 

improve performance on unknown data. With 98% 
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training accuracy, EfficientNetB0 learned well. Its 

validation accuracy was 78%. Therefore, generalization to 

new datasets might be improved. MobileNet has 86% 

training accuracy and 85% validation accuracy. Despite 

modest training accuracy, the model handles unseen data 

efficiently. Improved measurements may close the gap. 

Training accuracy of 98%    made the Proposed Model a 

high performer. Its 95% validation accuracy outperformed 

all other models, demonstrating its remarkable 

generalization for new data. This study's findings help 

academics and practitioners choose models for specific 

tasks by revealing their relative performance. 

 

4.2 DR Classification 

The loss values for training and validation of the 

newly proposed approach for DDR are shown in Figure-7. 

During the first period, the validation and training losses 

were recorded as 6.60111 and 7.769, respectively. By the 

fifteenth epoch, the losses seen in the validation and 

training sets had notably dropped to 0.91470 and 0.348, 

respectively. Moreover, at the 20th epoch, the validation 

and training losses showed a further decrease to 0.79554 

and 0.231, respectively. 

 

 
 

Figure-7. Training loss and validation loss. 

 

 
 

Figure-8. Training accuracy and validation accuracy. 

 

The accuracy of the proposed technique for DDR 

is shown in Figure-8, showcasing the training and 

validation results. During the first epoch, the validation 

accuracy was recorded as 0.7676, whereas the training 

accuracy was observed as 0.6592. At the 15th epoch, the 

validation accuracy has risen to 0.8177, while the training 

accuracy has attained a value of 0.9853. During the 20th 

epoch, the validation accuracy shows a notable 

improvement, reaching a value of 0.8337. Additionally, 

the training accuracy achieves a high level of performance, 

reaching a value of 0.9883. 

The Confusion Matrix is shown in Figure-9. A 

crucial method for evaluating an ML classifier's 

performance, particularly in the context of classification 

issues, is using a confusion matrix. The tabular format 

makes it easier to understand the model's predicted 

performance across several classes and pinpoints probable 

mistake sources. The layout of the confusion matrix, 

which displays a classification problem with five distinct 

classes, makes it easier to evaluate the model's 

effectiveness. With the rows denoting the real or true 

classes and the columns denoting the expected classes, the 

matrix in this example illustrates how the two correlate. 

Each element in the matrix represents the quantity of data 

points that fall into a particular mix of true and predicted 

classifications. This statistic makes it easier to see how 

often the model correctly predicts values for each class 

while also helping spot possible misclassification 

instances. 

Beginning with the "Mild" category, it is evident 

that the model accurately classified it as "Mild" on 16 

occasions and as "Moderate" on eight occasions, without 

any instances of misclassification for the "Mild" category. 

Transitioning to the "Moderate" category, the model 

accurately classified it as "Moderate" on 65 occasions. 

Nonetheless, the model tended to classify instances as 

"Moderate" on six occasions when the actual class was 

"Mild" and on five occasions when it was 

"Proliferate_DR." This suggests a certain level of 
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ambiguity or misclassification between these particular 

classes. The classes labeled as "No_DR" were correctly 

predicted as "No_DR" in 143 instances without any 

misclassifications to other categories. Similarly, the 

"Proliferate_DR" category was accurately identified as 

such in 14 instances, although it was also misclassified as 

"Moderate" 15 times. This observation underscores a 

challenge faced by the model in effectively discerning 

between these two categories. 

In the "Severe" category, there were eight 

accurate severity predictions. Nevertheless, the model 

made three predictions of "Moderate" and four predictions 

of "Proliferate_DR," indicating a potential challenge in 

accurately differentiating between these two 

classifications. 

 

 
 

Figure-9. Confusion matrix. 

 

Table-2. Classification report. 
 

 Precision Recall F1 Score 

Mild 0.62 0.67 0.64 

Moderate 0.71 0.82 0.76 

No_DR 0.99 0.98 0.98 

Proliferate_DR 0.61 0.47 0.53 

Severe 0.89 0.53 0.67 

 

Table-3. Comparative analysis. 
 

Model 
Training  

Accuracy (%) 

Validation 

Accuracy (%) 

ResNet50 91 56 

EfficientNetB0 74 59 

AlexNet 96 70 

DenseNet 91 73 

InceptionV3 91 74 

Proposed Model 97 84 

The classification report that assesses the 

performance of a classification model across several 

groups or categories is shown in Table-2. The study 

includes three key measures that are often used in the field 

of ML to evaluate the efficacy of the model: precision, 

recall, and F1-score. Precision assesses how well positive 

predictions are made, while Recall evaluates the model's 

ability to accurately identify every real positive 

occurrence. However, a fair assessment of a model's 

overall performance is offered by the F1-score, which is 

calculated as the harmonic mean of Precision along with 

Recall.  

The performance of the model is evaluated 

concerning five distinct categories in the provided table, 

namely "Mild," "Moderate," "No_DR" (indicating the 

absence of DR), "Proliferate_DR," and "Severe." The table 

lists the Precision and Recall and F1-score metrics for 

each class, which gauge how well the model can 

distinguish between and categorize samples within each 

class. For example, the results show that the model 

properly classifies cases as "No_DR" with high Precision, 

Recall, and F1-score values of 0.99, 0.98, and 0.98, 

respectively. However, an F1-score of 0.53 and a Recall 

value of 0.47 indicate it has trouble correctly identifying 

occurrences as "Proliferate_DR." The provided table 

presents significant information on the model's 

performance across different classes, facilitating the 

evaluation and future enhancement of the classification 

model. The classification accuracy comparison is reported 

in Table-3. 

The table compares training and validation 

accuracy for ResNet50, EfficientNetB0, AlexNet, 

DenseNet, InceptionV3, and the proposed model. These 

accuracy measures are crucial for evaluating these models 

and understanding their capabilities in various tasks. 

ResNet50 is a popular CNN design with 91% training and 

56% validation accuracy. The decreased validation 

accuracy signals overfitting, even when the model 

performs well on training data. EfficientNetB0 has 74% 

training accuracy and 59% validation accuracy. This 

suggests that the model is less likely to overfit than 

ResNet50 but still lacks validation accuracy. AlexNet is an 

early DL model with 96% training and 70% validation 

accuracy. It excels during training, but the accuracy 

difference between training and validation implies 

overfitting. DenseNet, like ResNet, has 91% training 

accuracy but 73% validation accuracy. Since the 

difference between training and validation accuracy is 

less, DenseNet has better generalization. InceptionV3 is 

another popular design, with 91% training accuracy and 

74% validation accuracy, like ResNet50. Like DenseNet, 

InceptionV3 generalizes better. Finally, the proposed 

model achieves 97% and 84% training and validation 

accuracy. 

 

5. CONCLUSIONS 

In this paper, a reliable approach that uses DL 

models to diagnose and categorize DR is suggested. The 

results show that the technique is beneficial in raising the 

accuracy and efficacy of DR diagnosis. The capacity of 
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the lightweight CNN for detection to accurately recognize 

instances of retinopathy in fundus images was shown by 

its accuracy of 95%. This high accuracy rate is essential 

for early diagnosis and intervention, both of which have 

the potential to improve the results for patients greatly. In 

addition, the classification model, built on the EfficientNet 

architecture, was able to attain an accuracy of 84% in 

categorizing the severity levels of DR. Because of its 

effectiveness and Precision, this model is an invaluable 

resource for ophthalmologists and other healthcare 

professionals in making well-informed choices on 

treatment and subsequent care. A complete solution for 

DDR is provided by a combination of a lightweight CNN 

for detection and the efficient EfficientNet for 

classification. This research advances the field of 

automated medical image analysis. It highlights the 

potential of DL techniques to enhance the early detection 

and treatment of DR, thereby enhancing patients' quality 

of life. 

 

REFERENCES 

 

[1] Gadekallu, Thippa Reddy, Neelu Khare, Sweta 

Bhattacharya, Saurabh Singh, Praveen Kumar Reddy 

Maddikunta and Gautam Srivastava. 2020. Deep 

neural networks to predict diabetic 

retinopathy. Journal of Ambient Intelligence and 

Humanized Computing: 1-14. Available 

from:https://link.springer.com/article/10.1007/s12652

-020-01963-7 

[2] Islam, Md Robiul, Lway Faisal Abdulrazak, Md 

Nahiduzzaman, Md Omaer Faruq Goni, Md Shamim 

Anower, Mominul Ahsan, Julfikar Haider and Marcin 

Kowalski. 2022. Applying supervised contrastive 

learning for the detection of diabetic retinopathy and 

its severity levels from fundus images. Computers in 

Biology and Medicine 146: 105602. Available 

from:http://dx.doi.org/10.1016/j.compbiomed.2022.10

5602 

[3] Da Rocha, Douglas Abreu, Flávia Magalhães Freitas 

Ferreira and Zelia Myriam Assis Peixoto. 2022. 

Diabetic retinopathy classification using VGG16 

neural network. Research on Biomedical 

Engineering 38(2): 761-772. Available 

from:http://dx.doi.org/10.1007/s42600-022-00200-8 

[4] Sugeno, Ayaka, Yasuyuki Ishikawa, Toshio Ohshima, 

and Rieko Muramatsu. 2021. Simple methods for the 

lesion detection and severity grading of diabetic 

retinopathy by image processing and transfer 

learning. Computers in Biology and Medicine 137: 

104795. Available 

from:http://dx.doi.org/10.1016/j.compbiomed.2021.10

4795 

[5] Riaz, Hamza, Jisu Park, Hojong Choi, Hyunchul Kim, 

and Jungsuk Kim. 2020. Deep and densely connected 

networks for classification of diabetic 

retinopathy. Diagnostics 10, (1): 24. Available from: 

http://dx.doi.org/10.3390/diagnostics10010024 

[6] Vinayaki, V. Desika and R. J. N. P. L. Kalaiselvi. 

2022. Multithreshold image segmentation technique 

using remora optimization algorithm for diabetic 

retinopathy detection from fundus images. Neural 

Processing Letters 54(3): 2363-2384. Available 

from:https://doi.org/10.1007/s11063-021-10734-0 

[7] Chu, Aan, David Squirrell, Andelka M. Phillips, and 

Ehsan Vaghefi. 2020. Essentials of a robust deep 

learning system for diabetic retinopathy screening: a 

systematic literature review. Journal of 

Ophthalmology 2020: 1-11. Available from: 

http://dx.doi.org/10.1155/2020/8841927 

[8] Rahim, Sarni Suhaila, Vasile Palade, Ibrahim 

Almakky and Andreas Holzinger. 2019. Detection of 

diabetic retinopathy and maculopathy in eye fundus 

images using deep learning and image augmentation. 

In Machine Learning and Knowledge Extraction: 

Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 

International Cross-Domain Conference, CD-MAKE 

2019, Canterbury, UK, August 26–29,  Proceedings 3, 

pp. 114-127. Springer International Publishing, 2019. 

Available from: http://dx.doi.org/10.1007/978-3-030-

29726-8_8 

[9] Khan, Zubair, Fiaz Gul Khan, Ahmad Khan, Zia Ur 

Rehman, Sajid Shah, Sehrish Qummar, Farman Ali 

and Sangheon Pack. 2021. Diabetic retinopathy 

detection using VGG-NIN a deep learning 

architecture. IEEE Access 9: 61408-61416. Available 

from: 

http://dx.doi.org/10.1109/ACCESS.2021.3074422 

[10] Tsiknakis, Nikos, Dimitris Theodoropoulos, Georgios 

Manikis, Emmanouil Ktistakis, Ourania Boutsora, 

Alexa Berto, Fabio Scarpa, Alberto Scarpa, Dimitrios 

I. Fotiadis and Kostas Marias. 2021. Deep learning for 

diabetic retinopathy detection and classification based 

on fundus images: A review. Computers in biology 

and medicine 135: 104599. Available from: 

http://dx.doi.org/10.1016/j.compbiomed.2021.104599 

[11] Saini Manisha and Seba Susan. 2022. Diabetic 

retinopathy screening using deep learning for multi-

https://link.springer.com/article/10.1007/s12652-020-01963-7
https://link.springer.com/article/10.1007/s12652-020-01963-7
http://dx.doi.org/10.1016/j.compbiomed.2022.105602
http://dx.doi.org/10.1016/j.compbiomed.2022.105602
http://dx.doi.org/10.1007/s42600-022-00200-8
http://dx.doi.org/10.1016/j.compbiomed.2021.104795
http://dx.doi.org/10.1016/j.compbiomed.2021.104795
http://dx.doi.org/10.3390/diagnostics10010024
https://doi.org/10.1007/s11063-021-10734-0
http://dx.doi.org/10.1155/2020/8841927
http://dx.doi.org/10.1007/978-3-030-29726-8_8
http://dx.doi.org/10.1007/978-3-030-29726-8_8
http://dx.doi.org/10.1109/ACCESS.2021.3074422
http://dx.doi.org/10.1016/j.compbiomed.2021.104599


                                VOL. 19, NO. 13, JULY 2024                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        863 

class imbalanced datasets. Computers in Biology and 

Medicine 149: 105989. Available from: 

http://dx.doi.org/10.1016/j.compbiomed.2022.105989 

[12] Hacisoftaoglu, Recep E., Mahmut Karakaya and 

Ahmed B. Sallam. 2020. Deep learning frameworks 

for diabetic retinopathy detection with smartphone-

based retinal imaging systems. Pattern recognition 

letters 135: 409-417. Available from: 

http://dx.doi.org/10.1016/j.patrec.2020.04.009 

[13] Qureshi Imran, Jun Ma, and Qaisar Abbas. 2021. 

Diabetic retinopathy detection and stage classification 

in eye fundus images using active deep 

learning. Multimedia Tools and Applications 80: 

11691-11721. Available from: 

https://link.springer.com/article/10.1007/s11042-020-

10238-4 

[14] Li, Xuechen, Linlin Shen, Meixiao Shen, Fan Tan and 

Connor S. Qiu. 2019. Deep learning-based early-stage 

diabetic retinopathy detection using optical coherence 

tomography. Neurocomputing 369: 134-144. 

Available from: 

http://dx.doi.org/10.1016/j.neucom.2019.08.079 

[15] Atwany, Mohammad Z., Abdulwahab H. Sahyoun, 

and Mohammad Yaqub. 2022. Deep learning 

techniques for diabetic retinopathy classification: A 

survey. IEEE Access 10: 28642-28655. Available 

from: 

http://dx.doi.org/10.1109/ACCESS.2022.3157632 

[16] Gayathri S., Varun P. Gopi and P. Palanisamy. 2021. 

Diabetic retinopathy classification based on multipath 

CNN and machine learning classifiers. Physical and 

engineering sciences in medicine 44(3): 639-653. 

Available from: http://dx.doi.org/10.1007/s13246-

021-01012-3 

[17] Bodapati, Jyostna Devi, Nagur Shareef Shaik and 

VeeranjaneyuluNaralasetti. 2021. Composite deep 

neural network with gated-attention mechanism for 

diabetic retinopathy severity classification. Journal of 

Ambient Intelligence and Humanized 

Computing 12(10): 9825-9839. Available from: 

https://link.springer.com/article/10.1007/s12652-020-

02727-z 

[18] Adriman Ramzi, Kahlil Muchtar and Novi Maulina. 

2021. Performance evaluation of binary classification 

of diabetic retinopathy through deep learning 

techniques using texture feature. Procedia Computer 

Science 179: 88-94. Available from: 

http://dx.doi.org/10.1016/j.procs.2020.12.012 

http://dx.doi.org/10.1016/j.compbiomed.2022.105989
http://dx.doi.org/10.1016/j.patrec.2020.04.009
https://link.springer.com/article/10.1007/s11042-020-10238-4
https://link.springer.com/article/10.1007/s11042-020-10238-4
http://dx.doi.org/10.1016/j.neucom.2019.08.079
http://dx.doi.org/10.1109/ACCESS.2022.3157632
http://dx.doi.org/10.1007/s13246-021-01012-3
http://dx.doi.org/10.1007/s13246-021-01012-3
https://link.springer.com/article/10.1007/s12652-020-02727-z
https://link.springer.com/article/10.1007/s12652-020-02727-z
http://dx.doi.org/10.1016/j.procs.2020.12.012

