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ABSTRACT 

This article presents a novel routing protocol named DROR, specifically tailored for underwater wireless sensor 

networks (UWSNs) to tackle the challenge of void regions. DROR integrates Reinforcement Learning (RL) and 

Opportunistic Routing (OR) in a recipient-oriented approach, considering the energy limitations and the unique underwater 

setting. It incorporates a mechanism for void rehabilitation, allowing packets to circumvent void nodes and maintain 

continuous moving for dependable transmission. Furthermore, a dynamic scheduling strategy based on relative Q-values 

ensures proficient packet forwarding along the most efficient routing path. Simulation outcomes illustrate the efficacy of 

the suggested protocol concerning delay, PDR, and energy tax in UWSNs with varying Range, Depths, Packet sizes, and 

moving radius. 
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1. INTRODUCTION 
Water covers around 71 % of the Earth’s surface, 

emphasizing the crucial role of underwater communication 

systems for transmitting data through aquatic 

environments. UWSNs have become indispensable for a 

wide array of applications, including oceanic exploration, 

environmental monitoring, and surveillance beneath the 

waves. However, devising efficient communication 

protocols for UWSNs poses considerable challenges due 

to the harsh underwater conditions, constrained energy 

reservoirs, and the dynamic nature of underwater settings. 

Conventional wireless communication methods prove 

inadequate in such environments, necessitating innovative 

solutions tailored to their unique characteristics. In this 

context, the integration of advanced technologies like 

reinforcement learning and opportunistic routing offers 

promising avenues for enhancing communication 

performance and dependability in UWSNs. In UWSNs, 

the task of replacing batteries is exceptionally challenging 

due to the submerged and often remote locations of the 

nodes. Therefore, it is imperative to utilize battery energy 

efficiently to prolong the lifespan of the network. 

Overutilization of battery power can lead to premature 

depletion, resulting in the failure of network nodes. Given 

the difficulty in deploying nodes in underwater 

environments, there tends to be a sparse distribution of 

nodes. Consequently, if nodes fail due to energy depletion, 

the network’s ability to forward packets through multi-hop 

communication may be compromised. This situation 

exacerbates the formation of void regions, where data 

transmission becomes unreliable or impossible due to the 

lack of functioning nodes. Thus, optimizing energy usage 

in underwater sensor networks is critical not only for 

prolonging network lifespan but also for ensuring effective 

communication by mitigating the risk of void regions and 

maintaining multi-hop connectivity. 

In this paper, we propose a modified RL-based 

routing protocol using depth information (MDROR). 

Opportunistic routing plays a crucial role in DROR by 

providing multiple potential routes from the origin to the 

destination, ensuring reliable packet delivery. Meanwhile, 

reinforcement learning empowers nodes to adapt and 

optimize their routing decisions based on interactions with 

the underwater environment. 

In DROR, each receiver node constructs a 

candidate forwarding set and evaluates its eligibility based 

on cumulative rewards calculated through reinforcement 

learning. This process determines whether the receiver 

node is qualified to receive packets from the sender, thus 

ensuring efficient and reliable transmission in UWSNS. 

To avert packet loss in void regions, we have 

incorporated a void recovery mechanism (VRM) within 

the protocol. This mechanism enables packets to avoid or 

escape from void nodes encountered during transmission. 

By doing so, we ensure that packets do not become 

trapped in areas where communication is unreliable or 

impossible, thereby preserving the integrity and efficiency 

of data transmission in the network. 

 

2. RELATED WORK 
In this section, our focus is primarily on 

reviewing the existing literature concerning routing 

protocols designed specifically for UWSNs. Routing 

protocols for UWSNs play a pivotal role in ensuring 

network connectivity, dependable transmission, and 

energy efficiency. Numerous different strategies have been 

put forth to overcome the difficulties presented by the 

submerged environment, which include variable network 

topology, high propagation delay, and bandwidth 

constraints. 

To give UWSNs dependable and timesaving 

routing, the EEGNBR protocol presents a localization-free 

routing technique. EEGNBR maximizes energy efficiency 
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and pdr by utilizing a distance-vector mechanism and 

creating a directing network to decrease network latency 

and a concurrent working mechanism to minimize 

forwarding latency. 

In the realm of RL based routing, the RL-Based 

Routing Protocol for UWNs presents a promising 

approach to adaptively route data in UWSNs. RL 

algorithms enable nodes to learn and select appropriate 

relay nodes without prior knowledge of the network 

infrastructure. While RL-based protocols offer flexibility 

and adaptability to dynamic underwater environments, 

research challenges and future directions remain to be 

addressed [2]. 

Similarly, the QELAR [3] protocol introduces a 

Machine Learning based adaptive routing algorithm aimed 

at extending the lifetime of UWSNs. By considering 

remaining energy distribution and optimizing routing 

decisions based on reinforcement learning, QELAR 

achieves significant improvements in network lifetime and 

energy efficiency compared to existing protocols. 

The QLACO [4] protocol addresses energy 

efficiency and link instability issues in UWSNs by 

combining reinforcement learning with an ant colony 

routing approach. By utilizing a reward function and anti-

void mechanism, QLACO enhances pdr and energy 

consumption efficiency, demonstrating superior 

performance over existing routing protocols. 

Additionally, a cooperative routing strategy [5] 

using Q-learning to optimize forwarding actions based on 

received incentives is proposed in the Cooperative Routing 

Protocol Based on Q-Learning for Underwater Optical-

Acoustic Hybrid Wireless Sensor Networks. In terms of 

packet loss rate, longevity, energy efficiency, network 

connectivity rate, and latency, this protocol performs 

better than state of-the-art underwater routing algorithms. 

The energy efficient guiding network based 

routing [6] for UWSNs, introduces a novel approach to 

routing by leveraging a localization-free scheme. By 

establishing a directing network and employing a 

simultaneous operation mechanism, this protocol reduces 

forwarding delay and improves energy efficiency, making 

it suitable for intermittent connectivity applications. 

In contrast, the Reinforcement Learning-Based 

Routing Protocol for UWSNs explores the use of 

reinforcement learning algorithms to adaptively route data 

in dynamic underwater environments. By learning from 

interactions with the environment, RL-based protocols 

enable nodes to make informed routing decisions without 

prior knowledge of the network infrastructure, thus 

improving adaptability and overall network performance. 

Periodic beaconing is used by the GCORP 

Protocol [7] to distribute location and energy information 

among nodes, making it possible to choose the best relay 

nodes for data forwarding. 

Similarly, the Relative Distance-Based 

Forwarding Protocol (RDBF) [8] employs a fitness factor 

to restrict the pool of potential forwarders, ensuring the 

selection of suitable relays for packet transmission based 

on appropriateness. 

The GEDAR Protocol [9] leverages node 

positions to greedily forward packets and employs a Depth 

adjustment related topology control algorithm to maintain 

network connectivity. 

In contrast, the Vector-Based Routing Protocol 

[10] dynamically adjusts pipe radius based on network 

dimensions, range, and node count to manage energy 

consumption effectively. 

 

3. METHODOLOGY 

 

A. Network Scenario 

The underwater sensor network architecture is 

shown in Figure-1. 

 

 
 

Figure-1. Architecture of UWSN. 

 

We envision a multihop UWSN comprising 

several sensor nodes and a central hub. These sensor nodes 

come equipped with pressure gauges, acoustic modems, 

and various Sensors. They are placed underwater at 

varying depths, securely fastened to the seabed, and 

assigned the duty of data collection. Meanwhile, the 

central hub equipped with both acoustic and radio 

frequency modems, is located at the surface of the water to 

gather and streamline the sensory data for forwarding. 

Each node possesses a distinct identifier and can 

ascertain its depth using a pressure sensor. All sensor 

nodes have identical forwarding radii and restricted initial 

energy resources, while the central hub benefits from 

inexhaustible energy reserves. Given the finite 

transmission range of sensor nodes and the suitability of 

acoustic waves for Underwater Communication, sensory 

data are relayed to the central hub in a step-by-step 

manner, utilizing the acoustic channel. Subsequently, the 



                                VOL. 19, NO. 13, JULY 2024                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        806 

sink relays this data to onshore facilities via a radio 

channel. 

In addition, because of the complicated 

underwater environment and the impact of water currents, 

irregular mobility, and sporadic link disconnections cause 

changes in the network architecture. 

 

B. Packet Delivery Probability Model 

Packet delivery probability is a statistic we use to 

evaluate nodes’ successful transmission within a single 

hop. Bit number n, signal frequency Fr, and forwarding 

distance (a) an are examples of characteristics that may be 

used to describe the Probability (Pb). This probability is 

formulated as follows: 

 

 
 

Where Pr(a,Fr) is the bit error probability and is calculated 

as 

 

 
 

Where pe(y) is the likelihood of an error when the selected 

modulation scheme’s average signal-tonoise ratio is y. The 

function fSNR(a,f,y) denotes the probability density given 

specific parameters a, f, and y, which may differ based on 

the selected fading models. 

The Signal to Noise ratio at the receiver is 

modeled by taking into consideration both path loss gain 

and losses as shown below: 

 

S.N.R                                  (3) 

 

Where Ebn stands for the energy required for each piece of 

transmission, P.L(a,Fr) shows Path Loss for frequency Fr 

and distance a and N0 shows the noise power density in the 

context of a white Gaussian additive noise channel. 

One way to formulate the path loss is as 

 

P.L(a,Fr) = (ak) · α(Fr)a                                               (4) 

 

Where k∈[1,2] represents the spreading loss factor which 

relates to the geometry of propagation, while α(Fr) 

denotes the absorption coefficient which can be 

formulated as: 

 

 
 

C. Reinforcement Learning Based Framework 

RL offers a decision-making framework devoid 

of the necessity for prior knowledge, achieving the global 

optimal policy through continual interaction. Given that 

nodes within distributed networks typically possess 

localized and restricted information, RL facilitates 

learning from the surroundings to increase overall 

objectives, rendering it particularly apt for underwater 

routing to determine optimal paths. Given the widespread 

utilization of Q-learning as a value-based and prominent 

R.L method in addressing routing issues, we establish the 

routing framework for UWSNs under an RLbased system 

model. The pertinent definitions of St, Ac, Pr, Rw within 

the Markov decision processes model are elaborated as 

shown below: 

 

 STATE: we establish St={St1,St2,St3,....} to denote the 

state, where Sti signifies that the packet is on node i. 

The status changes from Sti to Stj when the packet is 

relayed from node I to node J. 

 Action: We designate the action as 

Ac={ Ac1,Ac2,Ac3,....} and the selection of node i as 

relay node is represented asAci. 

 Transition probability: we denote transition 

probability as the likelihood that node i will complete 

action Acj from state Sti to Stj. The chance of a failed 

transition is described as 

 
 Reward: The immediate benefit received by node i 

upon taking action aj to transition from state si to state 

sj is referred to as a reward . The relay node 

selection process is directly impacted by the reward 

function design, which is dependent on network 

needs. 

By leveraging environmental feedback, RL 

empowers UWSN to choose the node with the greatest 

state value SV as the optimal node for packet forwarding 

from the outset, achieving the global optimum policy by 

using environmental input. The Q-value is used in Q-

learning to evaluate an action’s efficacy in a certain 

condition. For a given state-action pair, it is formulated as 

shown below: 

 Qπ(Sti,Acj) = dri(Acj) + γ PSj∈St(PbAcStijStj · SV π(Stj))     (6) 

 

Here, the value of the joint consideration 

comprises the Direct Reward, denoted by the former term, 

and the Discounted Long Term reward, represented by the 

later term. The discount Factor γ (0 ≤ γ < 1) is employed 

to regulate the influence of the Long Term Reward on 

decisionmaking. The direct reward function is formulated 

as: 

 

    (7) 

 

The Bellman optimality equation formulates the 

Optimal Q-value as 

 

Q(Sti,Acj) = dri(Acj) + γ PSj∈St(PbAcStijStj·  

SV (Stj))                                                                             (8) 
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SV (Stj) = maxAc Q∗(Stj,Ac)                                                      (9) 

 

D. DROR 

MDROR blends RL and OR inside an M-DBR 

protocol, taking into account the dynamic nature of the 

topology owing to limited energy and the underwater 

environment. This integration preserves the energy 

economy while guaranteeing data transfer performance in 

real-time. Decentralized routing choices are made at the 

receiver end in DROR. Nodes analyze information from 

the packet header when they receive a packet and decide 

whether to add themselves to the candidate forwarding set 

depending on predetermined standards. The RL-based 

paradigm states that a node is more likely to forward 

packets if it has a higher Q-value in the CFS. To address 

situations where packets get stuck in void regions, a void 

recovery mechanism is activated, enabling packets to 

circumvent these regions and continue toward the sink. To 

further maximize energy-efficient packet transmission, 

DROR incorporates a multipath suppression system and a 

dynamic holding time mechanism. The following details 

are included in the packet header and are relevant to 

routing: 

 

a) Packet identifier: The distinct I.D is its Identifier.  

b) Source node I.D: The unique node I.D assigned to 

the source. 

c) Sender node I.D: The unique node I.D assigned to 

the sender. 

d) Remaining energy: The current node’s remaining 

energy data. 

e) Depth: The current node’s depth data. 

f) Q: The sender’s and the current node’s Q value in the 

state-action pair. vii) SV: The current node’s SV 

value. 

g) Q-last: The Q-Value of the sender’s ideal optimal 

node during the most recent transmission. ix) 

recovflag: recovflag: The permitted forwarding 

direction of a packet may be determined by using this 

information, which is either zero or one, and is used in 

the void recovery process. 

The structure of the packet header is shown in 

Figure-2. 

 

E. Selection of Candidate Forwording Set 

To determine the candidate forwarding set, we 

utilize the depth values of nodes as input. Initially, we 

gather the depth information of neighboring nodes for the 

node under consideration. If the recovery flag is zero, 

indicating that the node is not in a void space, we proceed 

with our algorithm. However, if the recovery flag is 1, 

indicating that the node is in a void space, we initiate the 

void recovery mechanism. 

Subsequently, if the recovery flag is neither zero 

nor one, we calculate the difference between the depth of 

our node and its neighboring nodes. If the depth difference 

is less than zero, signifying that the neighboring node is at 

a shallower depth or closer to the surface compared to our 

node, we include that node in the CFS. This process is 

repeated for all neighboring nodes, thereby determining 

the potential candidates for forwarding. Once we have our 

candidate forwarding set we move forward to a selection 

of optimal node. 

Below is the algorithm for selecting the 

Candidate forwarding set. 

 

F. Selection of Relay Node 

To increase the dependability of UWSNs, DROR 

uses OR to choose optimal nodes from the CFS, which is 

made up of a portion of the sender’s nearby nodes. 

Because it directly influences the choice of relay node and 

protocol performance, the CFS selection is thus very 

crucial in DROR. The receiver, not the sender, decides the 

suggested protocol, and the receiver is shallower than the 

sender’s. Because the design considers the sink’s objective 

location, it makes it possible. 

 

 
 

Figure-2. Packet Header. 
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For us to understand the global transmission 

direction and minimize energy waste from pointless 

transmission. Data might be sent first in the OR by the 

best node in the CFS. However, owing to a lack of 

learning capability, this strategy may cause data 

transmission to follow a local optimum routing route 

rather than the global optimal one. RL gives networks the 

capacity to learn, remember, and adapt to changes in their 

surroundings. To choose the best relay node, we thus 

include Q-learning into OR in this journal. 

 

Algorithm 1: The Selection of Candidate 

 

 
 

The reward function is used in the RL framework 

to transfer tasks’ global goals into a Q-learning model, and 

it is essential to obtaining the best possible solution to an 

optimization issue. To achieve low end-to-end latency, 

energy efficiency, and reliability for UWSNs, we 

formulate reward function as 

 

 
 

Where g denotes a constant cost parameter that’s 

used to describe how much energy and bandwidth are used 

during packet delivery. Functions about depth and 

remaining energy are represented by DEji and REi, 

respectively The weight coefficient w, constrained within 

the range of (0,1), facilitates a trade-off between 

remaining energy and depth considerations. The void flag 

serves as a local indicator distinguishing void nodes, while 

C denotes a penalty coefficient regulating the penalty 

associated with selecting void nodes. 

By integrating remaining energy into the Reward 

function, UWSNs prioritize nodes with higher residual 

energy for forwarding, mitigating premature node 

depletion and extending network lifetime. Incorporating 

Depth into the reward function encourages UWSNs to 

choose nodes with significant depth differences for 

forwarding, thereby reducing jump count, energy use, and 

latency. 

The parameter recovflag - DEji guides packet 

transmission. When recovflag=1, indicating packet 

transmission from a void node requiring void region 

bypassing, recovflag - Dji= 1- Dji. This prompts void 

recovery mechanism activation, with preference given to 

nodes with minimal depth differences from the void node, 

yielding higher immediate rewards with larger 1 - Dji 

values. Conversely, when recovflag=0, allowing upward 

packet transmission to the sink, recovflag- Dji= Dji. Nodes 

with significant depth differences from the sender are 

preferred, yielding higher rewards with larger Dji values. 

This utilization of recovflag - Dji facilitates more efficient 

and reliable packet forwarding. 

Additionally, a penalty term C * voidflag is 

introduced for void nodes to deter them from packet 

forwarding. Voidflag serves as a local indicator, with 

nodes setting it to 1 when they have not overheard packets 

forwarded from shallower neighbor nodes for a period, 

signifying void node status. Conversely, void nodes reset 

voidflag to 0 upon overhearing packets from shallower 

neighbors. Nodes with voidflag = 1 are penalized and 

prevented from forwarding packets, reducing end-to-end 

latency and energy use by ensuring the selection of non-

void nodes for packet forwarding. In our protocol, nodes 

determine candidacy for packet forwarding based on 

Algorithm 1 upon packet reception. If deemed a candidate, 

nodes calculate the Q value using equations discussed 

before and set the holding time. Otherwise, nodes discard 

the packet. Packet data is updated with local information, 

and nodes forward packets upon the expiry of the holding 

time. Upon packet reception, the sink discontinues 

forwarding and broadcasts information to neighbor nodes, 

as depicted in algorithm 2. 
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Algorithm 2: Choosing Relay node 

 

 
 

G. Void Recovery Mechanism 

During data transmission, the remaining energy 

and Packet Delivery Ratio (PDR) of UWSNs decrease 

when packets encounter void regions, leading to dropped 

packets. To address this issue, a void recovery mechanism 

is devised to facilitate packet bypassing of void nodes and 

forwarding to the sink. This mechanism leverages the 

voidflag at nodes and the recovflag in packet headers to 

navigate void zones. Initially, when a node, say k, has a 

packet to send, both the voidflag and recovflag are set to 0, 

and the packet is broadcasted. If the packet remains 

unheard even after some time, node k identifies itself as a 

void node and sets both voidflag and recovflag to 1 before 

rebroadcasting the packet. Upon packet reception, nodes 

extract the recovflag. If recovflag = 0, nodes engage in 

candidate forwarding set selection per Algorithm 1. 

Conversely, if recovflag = 1, indicating that the 

node is in a void state and triggering the VRM, nodes not 

included in the sender’s CFS are allowed to transmit 

packets. These nodes then select relay nodes using 

algorithm 2. The illustration of packet transmission in void 

regions is depicted in Figure-3. 

 

 
 

Figure-3. Diagram of the recovery mechanism for  

void spaces. 

 

H. Redundant Packet Suppression Mechanism 

In underwater wireless sensor networks (UWSN), 

nodes often have multiple neighbors, leading to redundant 

packet transmissions that can significantly increase energy 

use and end-to-end latency. Given the limited energy 

resources in UWSNs, it’s crucial to minimize unnecessary 

transmissions. To address this, we propose a mechanism to 

suppress redundant packet transmissions by leveraging 

node overhearing and packet ID recording. 

When a node sends out a packet with a recovflag 

set to 0, neighboring nodes will reject the packet if they 

overhear it during the holding period. Alternatively, after 

the holding period has passed, they will send the package. 

Additionally, every node maintains a record of the IDs of 

the packets it has sent to stop nodes from continuously 

sending the same packet and wasting energy. Nodes 

initially verify the ID when they receive a packet to see 

whether they have previously forwarded it. This approach 

efficiently reduces redundant transmissions in both sender 

and receiver nodes, enhancing energy and transmission 

efficiency in UWSNs. Additionally, it facilitates the 

efficient forwarding of packets trapped in void zones to 

the sink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                VOL. 19, NO. 13, JULY 2024                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        810 

Algorithm 3: Void Recovery Mechanism 

 

 
 

Algorithm 4: Packet de-duplication system 

 

 
 

4. PERFORMANCE COMPARISON 
We assess the DROR protocol’s performance in 

this section. To illustrate DROR’s good performance; we 

compare it with three additional routing protocols: 

EBER2, QBOR, and QLFR. In conclusion, we showcase 

the parameter analysis to demonstrate the impact of 

various factors on the suggested approach. 

 

 
 

Figure-4. Deployment of nodes. 

 

 
 

Figure-5. Communication links between Nodes. 

 

5. PERFORMANCE ASSESSMENT 

In this section, we will compare our protocol with 

different parameters such as communication range, 

moving radii, packet size, and depths. First let’s see the 

performance of our protocol with different ranges such as 

R=900m, R=1000m and R=1100m. In Fig [9] we can 

observe that as the communication range increases, there 

is a gradual decrease in the latency of communication. 

This reduction occurs because the larger communication 

range results in fewer hops to reach the sink, thereby 

reducing both transmission and processing latency at relay 

nodes. Additionally, a larger communication range 

encompasses more nodes, providing a greater selection of 

suitable relay nodes. Furthermore, transitioning from 

limited to hefty node deployment introduces better relay 

nodes for packet forwarding, contributing to further 

reductions in latency. 

In Figure-10 we can observe that the progressive 

expansion of the communication range leads to a gradual 

increase in the PDR. This phenomenon occurs because the 

enlarged communication range encompasses more 

neighbor nodes capable of forwarding packets from the 

sender. Consequently, the broader routing path enhances 

dependability during the transfer. With the proliferation of 

deployed nodes, a greater number of eligible nodes can 

participate in packet forwarding, further contributing to 

the improved PDR. Moreover, as the number of void 
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regions diminishes with the increasing node deployment, 

the PDR experiences additional enhancements. 

 

 
 

Figure-6. Comparative assessment of average end-to-end 

delay across different ranges. 

 

 
 

Figure-7. Comparative assessment of PDR across 

different communication ranges. 

 

In Figure-11 we can observe that the energy 

expenditure associated with increasing the communication 

range exhibits a gradual increase. This trend arises due to 

the expanding communication range, which results in a 

reduction in the count of hops required from the source 

node to the sink. Consequently, there is a decrease in the 

number of packets forwarded and the corresponding 

energy consumption for transmission. However, as the 

number of nodes increases, more eligible nodes become 

involved in packet forwarding, resulting in increased 

energy use for packet transmission and reception. 

 

 
 

Figure-8. Comparative assessment of energy tax across 

different communication ranges. 

 

 
 

Figure-9. System configuration. 

 

 
 

Figure-10. Energy consumed (in mWh) in transmit mode, 

comparison type: Node 

 

 
 

Figure-11. Energy consumed (in mWh) in receiver mode, 

comparison type: Node. 
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Figure-12. Energy consumed (in mWh) in idle mode, 

comparison type: Node. 

 

 
 

Figure-13. Signals Transmitted, comparison type: Node 

 

 
 

Figure-14. Signals detected, comparison type: Node 

 

 
 

Figure-15. Time spent transmitting, comparison type: 

Node 

 

 
 

Figure-16. Time spent receiving, comparison type: Node 

 

 
 

Figure-17. Average transmission delay (seconds), 

comparison type: Node 

 

 
 

Figure-18. Utilization (percentage/100), comparison type: 

Node 

 

 
 

Figure-19. Average Path loss (dB), comparison type: 

Node 

 

 
 

Figure-20. Signals transmitted, comparison type: Node 

 

 
 

Figure-21. Signals detected, comparison type: Node 

 

 
 

Figure-22. Residual Battery capacity (in mAhr), 

comparison type: Node 

 

6. CONCLUSIONS 

This paper introduces an Opportunistic Routing 

(OR) protocol for USWNs, leveraging Reinforcement 

Learning (RL) techniques and depth information to address 

void regions efficiently. The proposed protocol establishes 

an RL-based framework, combining RL for optimal 

routing path selection and OR for reliable data delivery. It 

takes into account depth, remaining energy, and void 

nodes to ensure swift and energy-efficient data transfer. 

Furthermore, a void recovery mechanism is devised to 
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steer packets away from void nodes during transmission, 

thereby enhancing Packet Delivery Ratio (PDR). 

Additionally, to mitigate end-to-end delay and enhance 

network reliability, a dynamic scheduling strategy based 

on relative Q-values is introduced. Simulation outcomes 

demonstrate the protocol’s effectiveness in improving 

latency, PDR, and energy efficiency in UWSNs. 
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