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ABSTRACT 

Grain size analysis plays a crucial role in understanding the geological characteristics of the coastal environments 

that influence the optimizations for oil and gas production operations. This paper aims to explore a sophisticated 

geostatistical approach using the ordinary kriging and compositional kriging techniques, to forecast the grain size 

fluctuations of sediments in the Long Island region located in the United States. In addition, utilizing a comprehensive 

dataset collected from the same region about an integrated seventeen compositional components for investigation using the 

spatial model of the grain size distribution. Moreover, a variogram and the scatter plot predicted a distinctive spatial 

dependency was achieved. The compositional kriging method used to predict the grain size distribution in the coastal areas 

presented an accurate result based on the shape of the histogram, Root Mean Square Error (RMSE), and the Mean Squared 

Error (MSE). In conclusion, the geo-statistics assisted in the integration of the sedimentological analysis in the coastal 

settings and showed an effective configuration for the decision-making in the oil and gas industry business. 
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1. INTRODUCTION 

The vitality of sedimentary settings is vital in 

petroleum systems that involve emphasizing the essential 

part of the sedimentary deposit, where geological 

properties carried in the development, movement, and 

accumulation of the hydrocarbons where [1] stated that the 

sedimentary settings are important in petroleum systems 

because it starts with the origin of source rocks, the 

development of reservoir rocks, and the regulation of 

migratory patterns. In addition, the geological properties 

of sediments, as well as the processes that shaped them, 

are critical for forecasting the presence quality, and the 

distribution of the hydrocarbons in the underground oil 

reservoirs [2]. Sedimentary rocks are so significant in 

defining the reservoir properties that include porosity and 

permeability, however, the reservoir performance is to 

store and transport fluids influenced by the dimensions, 

arrangement of sediments, compaction, and grain 

cementations, [3] in addition, lithology and the effect of 

diagenesis are essential for the success of petroleum 

exploration and production [4]. Moreover, by identifying 

the key studies that successfully links the surficial 

sediment data to reservoir quality is instrumental in 

advancing the understanding of the subsurface dynamics 

governing hydrocarbon reservoir behaviour [5], which is 

focused on integrating the high-resolution surficial 

sediment data with the reservoir characteristics in a 

fluvial-dominated deltaic system, where many researchers 

such as [6] meticulously correlated the grain size 

variations in the surficial sediments using the 

petrophysical properties of the reservoir rocks, and 

therefore revealing a nuanced relationship between the 

surface and the subsurface of the sedimentary processes 

and the study exemplifies how a comprehensive analysis 

of the surficial sediment data can enhance the predictions 

of reservoir quality by capturing the dynamic interactions 

between the depositional environment and the subsurface 

rock properties. Furthermore, the research stood out for 

the application of the advanced sediment logical and 

geochemical analyses to link the surficial sediment 

properties with the reservoir quality in a coastal 

depositional setting, moreover, the authors went beyond 

the traditional grain size analyses and examined the 

influence of the sediment composition, organic content, 

and the mineralogy on the reservoir quality, whereas the 

researchers successfully established robust correlations 

between the surficial sediment attributed and the reservoir 

petrophysical parameters, showcasing the potential of 

multidisciplinary approaches in refining the predictions of 

the subsurface reservoir behaviour based on surface 

sediment data and the key studies collectively highlighted 

the significance of integrating the surficial sediment 

information into the reservoir characterization efforts for 

more comprehensive understanding of the hydrocarbon 

reservoir quality. Nevertheless, examining sediment 

samples along the entire coastline is impracticable, 

resulting in a paucity of information about the distribution 

of the coastal sediments therefore, the grain size of the 

sediments predicted at all unsampled sites as a result of 

geostatistical approaches for delineating the spatial 

patterns are also advisable for mapping and forecasting of 

the sediment characteristics, as well as contributing to the 

creation of maps depicting the coastal and seabed 

sediment features [7]. [8] explained the geostatistical 

interpolation methods such as the Ordinary Kriging (OK) 

are useful for anticipating the spatial change of the 

geological data, however, the approach assumes the spatial 

stationarity, which means that the spatial variability of the 

sediment grain size is assumed to be constant throughout 

the region. Additionally, in most papers, the choice of the 

variogram models affected the Ordinary Kriging (OK), 

and choosing the incorrect values may lead to a biased 
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forecast. The main purpose of this research paper is to 

compare the predicted performance of the two spatial 

interpolation algorithms for the coastal sediment 

distribution by seventeen groups of grain size, as this 

paper studied the comparison between ordinary kriging 

and compositional kriging. 

 

2. METHODOLOGY 

 

2.1 Study Area 

A total of 931 samples of coastal sediments were 

collected along the coastline, which were taken from the 

top 0 to 55 m at each sample position on the Long Island 

surface located in the United States. Figure-1 is created by 

Python programming to detect the location of data.  Table-

1 presents the sediment data used for the classification. 

PHIM5 which is the weight percentage of the sample in 5 

phi fractions (nominal diameter of the particles that are 

greater than or equal to 32 mm, but less than 64 mm); very 

coarse pebbles to PHI11 which is the weight percentage of 

the sample in 11 phi fractions (nominal diameter of that 

particles which are greater than or equal to 0.5 mm, but 

less than 0.001 mm particle size). In addition, Table-1 

presents the Group which is numbered in order of the size 

to assist the investigation and explains the data. 

 

 
 

Figure-1. Plotting long island in US sediment data on the map. 
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Table-1. Group number, attribute label, and grain size of long island sediment data in the US. 
 

Group Attribute Label Size 

1 PHIM5 
Nominal diameter greater than or equal to 32 mm, but less than 64 

mm 

2 PHIM4 
Nominal diameter of particles greater than or equal to 16 mm, but less 

than 32 mm 

3 PHIM3 
Nominal diameter of particles greater than or equal to 8 mm, but less 

than 16 mm 

4 PHIM2 
Nominal diameter of particles greater than or equal to 4 5mm, but less 

than 8 mm 

5 PHIM1 
Nominal diameter of particles greater than or equal to 2 mm, but less 

than 4 mm 

6 PHI0 
Nominal diameter of particles greater than or equal to 1 mm, but less 

than 2 mm 

7 PHI1 
Nominal diameter of particles greater than or equal to 0.5 mm, but 

less than 1 mm 

8 PHI2 
Nominal diameter of particles greater than or equal to 0.25 mm, but 

less than 0.5 mm 

9 PHI3 
Nominal diameter of particles greater than or equal to 0.125 mm, but 

less than 0.25 mm 

10 PHI4 
Nominal diameter of particles greater than or equal to 0.0625 mm, but 

less than 0.125 mm 

11 PHI5 
Nominal diameter of particles greater than or equal to 0.031mm, but 

less than 0.0625 mm 

12 PHI6 
Nominal diameter of particles greater than or equal to 0.016mm, but 

less than 0.0625 mm 

13 PHI7 
Nominal diameter of particles greater than or equal to 0.008mm, but 

less than 0.016 mm 

14 PHI8 
Nominal diameter of particles greater than or equal to 0.004mm, but 

less than 0.008 mm 

15 PHI9 
Nominal diameter of particles greater than or equal to 0.002 mm, but 

less than 0.004 mm 

16 PHI10 
Nominal diameter of particles greater than or equal to 0.001 mm, but 

less than 0.002 mm 

17 PHI11 
Nominal diameter of particles greater than or equal to 0.5 mm, but 

less than 0.001 mm 

 

2.2 Spatial Interpolation Analysis Using  

      Kriging Method 

Two geostatistical techniques which are the 

Ordinary kriging (OK) and the Compositional kriging 

(CK) were implemented to interpolate the grain size and 

compare it with the geostatistical analyst tool using Python 

programming. Deterministic approaches, such as Inverse 

Distance Weighting (IDW) typically measure the distance 
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between the points. However, the challenges of the 

interpolation method are sensitive to the outliers [9]. [10] 

discussed the statistical characteristics of the data and the 

semi-variogram which serves as the foundation for the 

geostatistical models. [11] Emphasized the interpolation 

method, by considering the statistical properties of the 

measured data using the Ordinary Kriging (OK) technique 

as shown in equations (1,2) which is straightforward of 

Kriging methods. 

 ZOK =  ∑ λiZiNi=1                                                                (1) 

 ∑ λiNi=1 = 1                                                                       (2) 

 𝑊ℎ𝑒𝑟𝑒: 𝑍𝑂𝐾 (𝑥0) is the interpolated value for point 𝑥0, 𝑍 (𝑥𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑙𝑢𝑒 , 𝜆𝑖 is the Ordinary kriging 

(OK) weightage for the 𝑍 (𝑥𝑖) value, moreover, [12] stated 

that statistical approach for estimating the values at the 

unsampled places uses the spatial correlation information, 

as well as examined the required Ordinary Kriging (OK) 

method and the variogram, which measures the degree of 

the spatial dependency between the two pairs of the 

locations and characterized the geographical connection 

between the sample points. therefore, the variogram is 

important to pose the details on how the variability data 

varies along the distance and the direction. However, 

when the data collection contains a substantial outlier and 

exhibits non-stationary behaviour, it may produce skewed 

results, and therefore inaccurate spatial interpolations 

might occur [13].  Compositional kriging is a geostatistical 

technique that combines the examination of the spatial 

distribution of several compositional components to 

provide a complete framework for forecasting and charting 

the variability of a compositional parameter over a given 

area. Compositional kriging provides a significant 

advantage in estimating the surficial sediment particle size 

because it takes into account the interaction of many 

compositional components. 

 

3. FINDINGS 

Although Kriging may produce a decent 

interpolation result in non-normal data, however, the best 

result is obtained when the data is normal or close to 

normal. As a result, The Long Island sample data set is 

log-transformed to generate the distributions that are as 

close to normal as possible. After the log transformation, 

the sampling data set is normally distributed as shown in 

Figure-2. 

 

 
 

Figure-2. Normal distribution of log transformation  

for long island in US sediment data. 

 

3.1 Dependency 
Figure-3 presents the scatter plot between the 

mean and the variance of the Long Island in United States 

of America sediment data, however, are not strongly 

correlated which is aligned with [14] and revealed using 

the non-gaussian symmetrical distributions, mean and the 

variance parameters but it cannot be quantified to be an 

independent random estimator. 

 

 
 

Figure-3. Scatter plot between mean and variance of long 

island in US sediment data. 

 

Figure-4 presents the scatter plot between PHI_9 

and PHI_10 which is strongly correlated with the 

correlation coefficient of (r = 0.962). Similarly, Figure 5 

shows a strong correlation between PHI_7 and PHI_8 with 

a correlation coefficient of (r = 0.960), Furthermore, the 

mean and the variance are not that much related, however, 

each variable may be correlated. Since they are dependent 

it is possible to examine and predict the semi variogram.  
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Figure-4. Scatter plot between PHI_9 and PHI_10. 

 

 
 

Figure-5. Scatter plot between PHI_7 and PHI_8. 

 

3.2 The Semi-Variogram 

Depending on the data inputs for each 

geostatistical interpolation method, the semi-variogram 

parameters nugget, sill, and the range were found as 

shown in Figure-6, the variogram has a range of 0.025 km 

(25m) where the data points behaved as an independent 

beyond the range distance and more likely the data are 

comparable when are the closer to each other. As a result, 

it shows 1.6 sill and a little nugget that demonstrates a 

small amount of randomness in the sites which are 

remarkably close to each other. 

 

 
 

Figure-6. A semi variogram for long island in  

US sediment data. 

 

3.3 A Comparison between the Distribution Histogram 

      of Two Kriging Methods  

After investigating the spatial dependency, the 

distribution of the data is examined the shape of the 

distribution between the original data and the kriging data 

for the ordinary kriging and the compositional kriging. For 

instance, data number 22 showed the original data 

distribution using the Compositional Kriging data 

distribution. It is noticeable that the highest value of 

original data is Group 8 but the interpolation value of 

Ordinary Kriging is Group 10, as shown in Figures 7 and 

8, the Group 8 the interpolation value in compositional 

kriging and the original data showed a similar shape of the 

distribution. 

 

 
 

Figure-7. The distribution for ordinary kriging and original data. 
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Figure-8. The distribution for compositional kriging and original data. 

 

3.4 Cross Validation 

Cross-validation is a crucial strategy when it 

comes to evaluating the statistics models. This method of 

statistics separates the dataset into subsets systematically, 

allowing for a thorough evaluation of the model's efficacy 

and adaptability. In this section, the Mean Squared Error 

(MSE) and the Root Mean Square Error (RMSE) are 

considered to quantitatively assess the predicted values as 

depicted in Table-2, this amount of 0.000176 is less than 

0.012924, which means that in this situation, the 

associated model has a lower average squared error. Since 

a lower Mean Squared Error (MSE) indicates a greater 

model performance in terms of accuracy, therefore, the 

Compositional Kriging is a better perception to predict the 

grain size in the coastal sediment data. Similarly, the Root 

Mean Square Error (RMSE) calculated the average size of 

the errors between the expected and the actual values by 

taking the square root of the mean squared difference and 

that is 0.079414 is less than 0.093389, where it indicates 

that the associated model has less average magnitude 

errors. Thus, 0.079414 indicates a lower average 

magnitude of the error than 0.093389, suggesting a 

potentially improved model performance in terms of the 

Root Mean Square Error (RMSE). 

 

Table-2. Cross-validation results of compositional kriging and ordinary kriging. 
 

 Compositional Kriging Ordinary Kriging 

Mean Squared Error (MSE) 0.000176 0.012924 

Root Mean Square Error (RMSE) 0.079414 0.093389 

 

4. CONCLUSIONS 
This study investigates the performance of 

several spatial interpolation algorithms for predicting the 

sediment distribution histogram. Two geostatistical 

methods named Compositional Kriging (CK) and 

Ordinary Kriging (OK) were used in the coastal sediments 

of Long Island, United States, for interpolation of the grain 

size and to select the most suitable method for the specific 

location. It is concluded that the data is dependent 

spatially as shown by the variogram and the scatter plots; 

it is required to compare the two interpolation methods 

using the shape of the distribution by using the histogram 

along the original data. Compositional Kriging showed a 

similar distribution in the shape with the original data.  

Similarly, the Root Mean Square Error (RMSE) and the 

mean Square Error (MSE) were calculated, and the 

Compositional Kriging presented more accuracy than the 

ordinary kriging. In addition, Compositional Kriging 

enabled a more accurate depiction of the spatial 

distribution of sediment features, which means a better 

prediction that takes into consideration the intricate 

interactions between the diverse sediment constituents. 
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