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ABSTRACT 

The Internet of Things (IoT) is an emerging technology that covers various domains and has become an essential 

part of the upcoming technological revolution. IoT applications include healthcare, smart-cities, smart-cars, industries, 

quality of life, and several other fields. IoT typically consists of lightweight sensor devices that facilitate procedures such 

as automation, real-time trackable data collection, and data-driven decisions. However, securing IoT networks is an 

accessible research area for several reasons. The main security challenges are limited resources that are incapable of 

dealing with complex and advanced security tools; and lack of required data for training the security systems like Intrusion 

detection systems as a result of their heterogeneous nature. This research proposed a Few-shot learning IoT intrusion 

detection system model based on a Siamese network to overcome the above limitation. The model aims to classify and 

distinguish normal and attacked traffic. The experiment utilized an IoT dataset in different scenarios to analyze and 

validate the behavior with three categories with different numbers of data in each. The performance result achieves more 

than 99% accuracy and shows an efficient detection ability using only less than 1% of the dataset. 
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1. INTRODUCTION 

Nowadays, the revolution era of technology is 

rapidly growing, with innovations and enhancements that 

are regularly updated. However, technology is not only 

computers, servers, and storage connected to a network, 

but the services it provides are also technology.  

Technology revolutionized the world in all fields of life 

and impacted critical aspects such as countries’ economic 

growth, drivers of rapid inventions and education, and 

healthcare. The Internet of Things IoT contributes to 

technology by facilitating communication and data 

transmission in various domains. IoT is simply a collection 

of small physical devices and sensors connected to the 

internet to provide meaningful full real-time data that can, 

later on, be analyzed as a whole, that ends with 

meaningful information, and that helps in decision-making 

[1]. The Dark Side of IoT is the drawbacks in cyber 

security strength based on its natural diversity, limited 

resources, and lack of security standards [2]. Hence, 

securing IoT is one of the trend research areas nowadays 

with the attempt to fulfill the security gaps. 

Intrusion detection system IDS plays a crucial 

role in network security and is considered one of the 

robust countermeasures to prevent malicious intrusions in 

IoT networks. IDS are defined as software or hardware 

systems that intend to secure the network from 

unauthorized behavior or abnormal activity that could be 

security intrusions or breaches [3]. The intrusion detection 

system has two main types: signature-based and anomaly-

based. The signature-based IDS monitors network traffic 

and reports any matches with well-known registered 

attacks and intrusion patterns. Whereas anomaly intrusion 

detection analyses the behaviour of certain networks and 

traffic flows, keeps them for their normal activity, and 

alerts for any detected abnormal suspicious activity. 

Typically, the rate of false alerts, also known as false 

alarms, is higher in IDS anomaly-based than signature-

based. However, the signature IDS cannot detect new 

intrusion attacks or zero-day attacks as well as it is not 

regularly updated. That’s why, with the increasing number 

of new intrusions robust anomaly IDS is highly demanded 

especially in a heterogeneous network such as IoT.   

Nowadays, the revolution of networks and digital 

communication has challenged traditional intrusion 

detection systems IDSs to deal with rapid network 

communication with huge amounts of complex data 

transmission and operations, which leads to poor 

performance and efficiency by using limited traditional 

approaches. Artificial intelligence (AI) plays an essential 

role in devolving current IDSs and enhancing the detection 

performance. Several research studies investigate both 

machine learning ML and Deep Learning DL in IDSs. 

ML-based IDS requires manual feature extraction which, 

unlike the other advanced AI techniques, gives a low level 

of performance. In contrast to the suboptimal efficiency of 

IDS based on ML, Deep-learning (DL) IDSs show 

tremendous improvements in the performance and 

automated feature extraction process. However, DL 

methods require large data and huge computational 

resources for processing to train the IDSs [4, 5]. Hence, 

data gathering becomes an issue that limits IDS 

performance, as data may scarce sometimes, especially in 

IoT networks. Because of these drawbacks of both ML 

and DL intrusion detection systems, many scholars 

investigated the possibility of how to gain a high level of 

accuracy with minimum data and low resource 

consumption.   
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Few-shot learning FSL is one of the emerging AI 

methods; classified under the umbrella term of meta-

learning, also known as learning by learning. FSL 

overcomes the limitation of data starving in training, as the 

model can successfully classify rules based on only a few 

samples. Various methods and approaches help to 

implement FSL. Metric-based is one of the common FSL 

approaches that use the nearest distance matrix to compute 

the similarity among the samples and then classify it 

according to the calculated distance [6]. Siamese network 

is a metric-based method that uses distance metrics for 

classification. The process of measuring the similarities is 

by comparing two input samples, and computing the 

similarity of vital feature vectors of these two pairs, the 

output of this process is to classify based on distance 

similarity or dissimilarity [7]. Figure-1 illustrates the 

Intrusion detection system classification and shows 

exactly where FSL and Siamese networks are categorized 

under which position in the subclasses. This paper will 

explore the performance of applying a Siamese network 

method in an IoT Intrusion detection system.  

The paper falls into six parts. First comes an 

introduction that provides a brief conceptual background 

of the vital contents. The second section is the literature 

review. The third section explains the proposed method, 

while the fourth section shows the experiment and the fifth 

discusses the result of the experiment. Finally, the last 

section is the conclusion, followed by the references.  

 

 
 

Figure-1. Intrusion detection system’s classification. 

 

 

2. LITERATURE REVIEW 
IoT network security challenges the natural 

diversity of IoT networks, leading to unpredicted 

intrusions and attacks. The most IoT intrusions and 

meliaceous attacks are smart and suddenly occur such as 

zero-day attacks [8]. Yu et al. (2023) believe that 

traditional IDSs for securing IoT networks cannot detect 

novel attacks, although traditional IDSs may have a high 

accuracy detection rate it failed in interaction and real-

time detection speed. Therefore, Yu et al. [9]. Proposed a 

novel model that has the efficiency of both high detection 

accuracy and real-time interference speed rate. The model 

comprises three parts: data processing, data augmentation, 

and image classification. The first part of the model is 

developed by utilizing Gramian Angular Fields, and it 

transmits the real-time traffic from one dimension to two 

dimensions. In the second part of the model, Denoising 

Diffusion Probabilistic is mainly employed to overcome 

the issue of limited samples, while “Few-shot learning” 

challenges traditional IDS to detect attacks with rare 

sample data and provides better generalization. The third 

part of the model uses the architecture of the micro-neural 

network search approach. The proposed model reached an 

accuracy of over 99.20% by experimenting with six types 

of datasets that combine self-constructed and standard 

datasets such as CICIDS2018, IoT_23, and N-BaIoT. 

However, the model is extremely complex, which may 

lead to increased resource consumption which may 

challenge to implementation of it on limited resource 

networks as IoT. In addition, the model cannot be 

generalized [9]. 

The imbalanced data is another issue in IDS that 

is linked to scarce data, which requires traditional over-

sampling and under-sampling techniques to overcome the 

data needs IDS training. Bedi et al. (2020) developed 

Siamese Network-based IDS to eliminate the problem of 

imbalanced data and to perform well with a limited 

amount of data. The novel model called Siam-IDS uses 

Siamese networks to compute the distance by a Euclidean 

distance of two paired networks with the same weight and 

extracted feature vectors. The output of computing the 

similarity among paired networks helps in detecting 

attacks based on the loss similarity results. The experiment 

was conducted to test the performance of various types of 

attacks on the NSL-KDD Dataset such as U2R attack, DoS 

attack, Probe attack, and R2L attack. The developed IDS 

DNN and CNN models showed better performance in 

terms of recall compared to other IDS models. However, 

the model requires more validation as it is applied only to 

the most common old standard dataset NSL-KDD, and on 

five categories only. The model may have lower 

performance in different real types of scare attacks and 

different datasets [10]. 

In IoT network security, Thein et al. (2023), 

proposed a network anomaly malicious traffic detection 

system based on a prototypical graph neural network. 

Monitoring and filtering network traffic is a crucial 

security countermeasure to secure IoT networks. The 

traditional IDS that is based on supervised ML techniques 

encounters difficulty in dealing with a few of attack 
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dataset samples, as these data samples are vital in training, 

and fail in detecting zero-day cyber-attacks for the same 

reason. Hence, to overcome this problem, an FSL_IDS 

method is proposed. The method is not dependent on any 

signature-based or labels of prior knowledge; it converts 

raw network traffic into image form and applies CNN to 

extract vital features. Then Euclidean distance calculates 

the loss function and computes the similarity. The study 

experiment was conducted on the IoT-23 Dataset by using 

5-10 shots (sample) for 4-way (classes) for FSL 

architecture. The result shows high performance as it 

reaches an average of 90.72% for the F1 score. Even 

though the method is validated and reaches better 

performance than the two other approaches; one fussy 

graph and the other the prototypical network, only one 

dataset is used as well as detected for only N-classes 

meaning it predicts for 4-classes and is not adjustable. In 

addition, it cannot detect novel attacks [11]. 

Similarly, Li et al. (2022), proposed an IDS 

model for IoT networks called (RFP-CNN) consisting of 

Recursive Feature Pyramids (RFP) and Neural 

Architecture (CNN). The protection of IoT networks is 

crucial as they are susceptible to be easily exploited by 

attackers. Securing IoT networks requires advanced tools 

that can handle the huge variety and heterogeneity of IoT 

networks as each domain lacks sufficient attack records 

for training AI tools. The proposed model used a Siamese 

network to extract features for the domain discriminator. 

Additionally, it utilized an improved Cascade R-CNN for 

unsupervised domain adaptation regularization which is 

adversarial and enhances the efficiency of IDS to detect 

IoT network. This technique improves the model’s 

precision and makes IDSs more adaptive and robust in 

detecting network traffic attacks including novel attacks. 

The model archived promising results, when tested with 

four datasets, and validated against other models. 

However, it is more sensitive to data noise and consumes 

large amounts of resources and time [12]. 

Miao et al. (2023) presented a novel IDS traffic 

classification model based on Siamese Networks and 

Prototypical Networks. For several scholars, the main 

contribution and the value behind developing few-shot 

learning intrusion detection systems is the ability to deal 

with a small amount of data in training and to overcome 

the scarcity of attack data scarcity. Despite, various 

enhancements added by incorporating FSL in IDS, such as 

rapid detection and the ability to detect novel types of 

attacks. The issue of detecting out-of-distribution samples 

is not extensively addressed. Therefore, the presented 

model aims to improve efficiency and support the 

detection of out-of-distribution samples in identifying 

unknown traffic in IoT networks. The model consists of 

two frameworks meta-learning and testing-learning. The 

discriminative features are extracted by CNN and passed 

to the twin pair networks which then classify traffic based 

on computed metric distances using an equation. The 

performance of the presented model achieved 99.33% 

accuracy with only five samples, which is outstanding 

compared to other IDS models, especially with the added 

capability of detecting out of distribution samples. 

However, the presented supervised approach heavily relies 

on data labeling and prior knowledge [13]. 

In encrypted traffic inspection, Yang et al. (2023) 

proposed an enhanced meta-learning model based on 

multi-task representation for traffic classification using 

few-shot learning. Encrypting traffic can be costly for 

security enhancement. Traditional traffic classification 

based on machine learning and deep learning faces the 

problem of collecting huge amounts of encrypted traffic 

and the additional effort in labeling it. Therefore, using of 

few-shot learning for encrypted traffic will cause to reduce 

the number of labels, which is practical. The proposed 

model tackled the issue of multi-classification tasks for 

encrypted traffic and improved the differences in traffic 

representation using the flow discrepancy enhancement 

module. The model shows high performance in encrypted 

traffic classification. However, it cannot identify OOD 

samples as it is limited to classifying ID numbers of 

samples [14]. 

Huang et al. (2020) presented a model for 

anomaly detection based on network structure 

incorporating a gate for dealing with imbalanced data. The 

supervised learning approach typically requires massive 

efforts in labeling huge amounts of data samples. Various 

methods cannot detect unknown types, as they depend 

only on labelled data even though they use anomaly-based 

few-shot learning. The proposed model aims to solve the 

issue of imbalanced data, by presenting a network 

structure that acts as a robust gate to distinguish and define 

if the test sample is seen or unseen from a set of samples 

that are the support set preemptively. The model is based 

on similarity metrics that utilize CNN to act as an encoder. 

The model is tested with a common standard dataset NSL-

KDD, and the accomplished result is reasonable.  

However, replacing feature extractions with meta-learning 

may lead to instability and inefficient detection. Hence, 

further validation is needed to prove the above facts with 

various dataset validations [15]. 

In smart home intrusion detection, Chen et al. 

(2023) proposed a method called the “EM-FEDE 

Enhancement Method based on Feature Enhancement and 

Data Enhancement”. The smart home is one of the IoT 

network applications, the number of which is rapidly 

increasing, making security a major concern. Malicious 

intrusions in smart homes may compromise privacy and 

damage vital devices and the main controller of smart 

homes. Due to the diversity of smart homes and lack of 

standards for collecting data samples for training IDS-

based ML, DL is challenging. The proposed methods 

enhance the scenarios of having only a few shot samples 

in developing smart home IDS. The method consists of 

three parts. The first part is a feature enhancement that 

works on analyzing historical data of smart homes and 

analyzing it to ensure the data quality and extend features 

based on that. The second part is the data enhancement, 

which includes data filtering, removing duplication and 

unnecessary values. The final part is similarity measures, 

which mainly use Wasserstein distance. The generator that 

produces a variant range of counterfeit samples does this. 

On the other hand, the discriminator works as a 
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differentiator between authentic and counterfeit examples. 

The proposed method shows outstanding performance, 

exceeding a 21.9% improvement in accuracy. The 

experiment validates various IDS methods, but the optimal 

expansion ratio is not specified in the study [16]. 

 

Table-1. Literature Review Summary. 
 

Ref Author Year Method Performance Limitation 

[9] Yan et al. 2023 

GAF Gramian Angular Fields, DDPM 

Denoising Diffusion Probabilistic and 

variable network ETNet V2 neural 

architecture 

99.20% 
Complex and not validated 

in terms of generalization 

[10] Bedi et al. 2020 Siamese Neural Network 

Recall the highest 

91.22%, and 55.22% 

lowest 

Needs more validation as - 

it is validated by only one 

common old dataset that 

has five classes. 

[11] 
Thein et 

al. 
2023 Prototypical Graph, Neural Network F1 Score average 90.72% 

Cannot detect novel attacks. 

Only one dataset is used 

[12] Li et al. 2022 
Recursive Feature Pyramids RFP and 

Neural Architecture CNN 
Accuracy 96.68% 

Sensitive to noise in data. 

Consume large amounts of 

resources and time. 

[13] Miao et al. 2023 Siamese Prototypical Network 
Accuracy 98.33% with 5 

samples only 

The presented supervised 

approach heavily relies on 

data labelling and prior 

knowledge. 

[14] Yang et al. 2023 
Enhanced meta-learning model based 

on multi-task representation 
F1 +90% 

cannot identify OOD 

samples as it is limited to 

classify ID numbers of 

samples 

[15] 
Huang et 

al. 
2020 

Network structure incorporating a gate 

and CNN 

Overall accuracy 84.70% 

using 5-shot 

- No feature extraction. 

- Needs more validation. 

-One dataset is used. 

[16] Chen et al. 2023 
Feature Enhancement and Data 

Enhancement 

More than 21.9% 

accuracy improvement 

The experiment validates 

various IDS methods, and 

the optimal expansion ratio 

is not specified in the study 

[17] 
Ayesha S 

et al. 
2023 

 

Few-Shot Self- Supervised 

The highest F1 score in 

accuracy is 98.01% and 

the lowest is 59.60% 

with 5- shots. 

Complex and may 

challenge generalization. 

 

Low result for one dataset 

 

Ayesha S et al. [17] presented an IoT intrusion 

detection system framework based on a self-supervised 

few shot. Unlike other traditional networks, IoT networks 

spread rapidly with various heterogeneous functions and 

vendors, lacking standards, diversity, and several other 

aspects that challenge the security level of IoT networks. 

In contrast, traditional IDS require massive data for 

training, which is scarce in some cases in IoT networks, 

despite other issues related to imbalanced datasets. 

Therefore, the proposed framework aims to fill the gaps 

and overcome the challenges of collecting and labelling 

the enormous amount of data for training IDS. The 

framework is named FS3, which stands for “Few-Shot 

Self- Supervised”. FS3 encompasses three phases: The 

first phase is handling imbalanced data by learning hidden 

patterns using self-supervised learning. The second phase 

combines contrastive learning and few-shot learning to 

enable IDSs to perform efficiently with a few labelled 

samples by computing the loss among classes using triplet 

loss and Multi-Similarity Miner. The third one is an 

extended classification of the sub-sample using the K-

Nearest Neighbor to further enhance the performance of 

imbalanced sample classification. The experiment is 

conducted on three datasets including BoT-IoT and shows 

a significant improvement of up to 43.95% in terms of F1 

score. However, the F1 score result of BoT-IoT is very 

low and the gap among/with the other highest exceeds 

38%. Hence, it may be challenging to generalize the 

framework as it requires more validation [17].  
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Figure-2. Proposed model brief background. 

 

3. METHODOLOGY 

The proposed methodology is based on three 

main phases: dataset selection and processing, Siamese 

network architecture model, and predictive classifier. 

Figure-1 Illustrate a brief of the three phases in the 

proposed model. 

 

A. Dataset Selection and Processing 
 

a) Dataset Selection 

The dataset is selected based on several scholars' 

reviews and to fulfill the requirements of developing an 

IoT intrusion detection system. The dataset should be an 

IoT dataset containing different types of common IoT 

intrusion. The MQTTIOT2020 dataset is recent and is the 

first dataset of its kind that is publicly available. The 

dataset is comprehensive, and variant compared to other 

IoT datasets, simulated MQTT IoT network. The chosen 

dataset MQTT-IoT-IDS2020, introduced by Hanan et al. 

[18], based on a designed simulated IoT network. The 

dataset simulation process of the IoT MQTT network 

includes several connected sensor devices, a broker, 

cameras, and attackers. The recorded data consists of five 

main scenarios tracking common attack types in IoT 

networks, with four intrusion attack classes, and one 

normalclass.  Table-2; describes each attack in MQTT-

IoT-IDS2020. All captured raw data is merged into feature 

extraction and recorded in a CSV file. The features are 

extracted at three levels: Packet, Unidirectional flow, and 

Bidirectional flow. In our model, we focus on bidirectional 

flow features. The dataset adds value to research in the 

field of intrusion detection as the CSV file is usable and 

contains vital features adaptable for training, testing, and 

processing in developing IDSs scholar such as [19], and 

[20] utilize this dataset in their experiments. 

 

b) Data Pre-processing 
The total number of records in MQTT-IoT-

IDS2020 bidirectional flow exceeds 259380 in the CSV 

file. In few-shot learning, the aim is to achieve high 

accuracy by using a few samples for training and testing. 

Therefore, in our model less than 0.5% of the total number 

is used. For the preprocessing process, we cleaned the 

data, removed all duplicated and non-valued records, and 

performed normalization. Besides, we balanced the data 

into two binary classes:  attack (1) which includes a 

combination of the four attacks, (MQTT Brute-Force, 

scan_A, scan_sU, and Sparta) as described in Table-1 and 

normal traffic indicated as (0) label. Furthermore, the 

model depends on data splitting to increase the number of 

the support set and query set, with an inverse relationship 

between them. Splitting the data into training and testing 

facilitates the evaluation model for robust generalization 

assessment, avoiding over-fitting and enabling 

comparative analysis [21], [22]. The Siamese network 

requires two pairs of samples for each training and testing. 

Hence, we generate several X paris (X1, X2) samples, 

where each sample is paired with another sample in the 

same class to measure the similarity score for training and 

later evaluation in testing. 

 

Table-2. Attack types used in the MQTT-IoT-IDS2020 dataset. 
 

Attack Type Description 

The MQTT Brute-Force 

Attempt to access the network by 

systematically entering various potential 

credentials to infer MQTT credentials 

Aggressive scan (scan_A) 

Scanning tool that aims to explore 

vulnerability in uncovering accessible ports 

and services within the network. 

UDP Scan (scan_sU) 

Malicious scanning attack that explores 

vulnerability by scanning UDP ports for any 

weakness in the network 

Sparta SSH Brute-Force (sparta) 
Continuous iterated systematic attempts to 

discover valid SSH credentials 
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B. Siamese Network Architecture 
The first step in Siamese network architecture is 

to create a base network. The base network is a feed-

forward neural network that includes two identical sub-

networks as illustrated in Figure-2 Sub-network1 and Sub-

network2. Each sub-network consists of five layers: an 

Input layer, three hidden layers, and an output layer. The 

first layer is the input layer, which handles the input in two 

sub-network paths. The input is in the shape of the 

previously generated pre-processed twin samples Paris X1 

and X2, with embedded 27 features. The input is 

associated with a flattened layer that merges the input into 

a dimensional array. The three hidden dense layers; each 

contains the ReLU activation and 128-unit neurons. The 

output layer is a feature vector that represents the learned 

embedding features. The feature vector is used in further 

distance computation. The output feature vector from sub-

network 1 is compared with the feature vector out-put by 

sub-network 2. The distance is computed using Euclidean 

distance. In training, lists of pairs of samples X1 and X2 

that have the same class are processed together through 

sub-networks 1 and 2. The output feature vectors from 

both networks are computed and compared in terms of 

distance to learn the similarity and loss distance based on 

the similarity of these two pairs. This process is repeated 

in several batch iteration epochs and tasks for both sub-

networks until the model is well-trained and learns the 

distance between these two binary classifications: 0 for 

normal and 1 for attack. The contrastive loss is defined in 

the model for rapid learning, associated with the Adam 

optimizer. 

 

C. Predictive Classifier 

Since the model is well-trained based on the 

support set similarity score of the distance comparison of 

the two classes of the two pairs using Siamese network 

architecture. Then in the same way, the model trained, and 

it will predict the distance score for the two pairs of 

unlabelled query sets in testing the model. The distance 

threshold from training is utilized for converting predicted 

distances into binary predictions. The class normal is 

represented as 0, while class 1 is represented as an attack. 

The evaluation process contains a pair list of batches of 

query sets. If the computing distance is greater than the 

trained distance threshold, it will be classified as 0 normal 

which is similar. If not, it will be dissimilar, in this case 1, 

which indicates the attack class. The model performance is 

evaluated by computing a confusion matrix as shown in 

Table-3. True similar represents true positive, while true 

dissimilar corresponds to true negative, false similar is 

equal to false positive, and false dissimilar refers to false 

negative. Furthermore, the performance is evaluated by 

using various other matrices such as accuracy, F1 score, 

precision, and recall.  

Table-3. Confusion matrix for performance evaluation. 
  

Confusion Matrix 

 Normal (0) Attack (1) 

Normal (0) Ture Similar Fale Dissimilar 

Attack (1) False Similar True Dissimilar 

 

4. EXPERIMENT  

The experiment was conducted by using a laptop 

running on an Intel Core (TM), i5-7200U 2.50GHz 

processer, 2701 MHz, with 2 Core(s), and 12GB of RAM. 

The software used included: Python 3.10 64bit, Visual 

Studio Code under an Anaconda 2.3.2-isolated 

environment, and the main programming libraries utilized 

were: Tensor-Flow, Keras, NumPy, Matplotlib, Scikit-

learn, Seaborn, and Pandas. 

Since the model is based on Few-shot learning, 

the experiment utilized less than 1% of the total 

downloaded CSV dataset file. The dataset was divided into 

three sets of balanced data: the first set consisted of 120 

total samples, the second set had 280 samples, the third set 

contained 520 samples. This division allowed for an 

efficient evaluation of the proposed model and analysis of 

its behaviour with varying number of trained and tested 

data. The experiment relied on the data split for training 

and testing, defining the number of support sets and query 

sets based on the data split for binary classification. All 

attack types in the dataset were merged into one class 

labelled as 1, while normal data was labelled as 0. This 

data split added more adaptability and may enhance the 

generalization of the model. 

The model was trained on pairs of training sets, 

and each half of the pairs is processed separately in one of 

the identical twin networks that share the same weight. 

The raining of model was for 20 epochs and 16 size of the 

batch. The first dataset included 120 balanced samples: 60 

attacked and 60 normal samples. Then, data was divided 

into two sets: support set represents training and query set 

represents testing and evaluation. The data deviation in 

support set and query set was experimented with in four 

scenarios. First split the data into 80:20, which means that 

80% of the data was used as training (Support Set), while 

the remaining 20% was used as testing (Query Set). The 

second scenario was of 60:40, means 60% training and 

40% testing. The third scenario consisted of 40:60, 40% 

for training and 60 % for testing. The fourth scenario used 

20:80 means 20% for training and 80% for testing. The 

same approach and scenarios were applied for all three 

sets (120, 280, and 520). This included the pairs’ 
generation for the twin networks. Table-4. Illustrates all 

data information and details of the number of samples.
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Table-4. Number of samples in each set. 
 

Set Split #TR #TS #TR_ P #TS_P 0:1 TR 0:1 TS 

120 

80:20 96 24 6863 412 49:47 13:11 

60:40 72 48 3848 1700 38:34 26:22 

40:60 48 72 1688 3836 28:20 40:32 

20:80 24 96 416 6860 14:10 50:46 

280 

80:20 224 56 37520 2324 112:112 28:28 

60:40 168 112 21075 9343 87:81 59:53 

40:60 112 168 9348 21080 58:54 86:82 

20:80 56 224 2320 37516 30:26 114:110 

520 

80:20 416 104 129575 8051 211:205 55:49 

60:40 312 208 7816 32308 162:150 110:98 

40:60 208 312 32308 7816 110:89 162:150 

20:80 104 416 8051 129575 55:49 211:205 
 

Key: 

SET: Total number of samples. 

#TR: Number of training samples after the split. 

#TS: Number of testing samples after the split. 

#TR_ P: Number of training sample pairs. 

#TS_P:  Number of testing samples pairs. 

0:1 TR: Number of attack and normal samples in training as 0 normal and 1 for attack. 

0:1 TS: Number of attacks and normal samples in testing as 0 normal and 1 attack. 

 

5. RESULTS AND DISCUSSIONS 
The Siamese network model experiment was 

conducted on less than 1% of the MQTT-IoT-IDS2020 

dataset, and the results are based on the divided sets; 

illustrated in Table-4. This division carried three parts: 

120, 280, and 520 sets with the following split approaches 

for training and testing. The first split is 80:20, the second 

is 60:40, the third is 40:60, and the fourth is 20:80. 

 

A. Result for the Set of 120 of MQTT-IoT-IDS2020. 
The total amount of data in this set is 120, and the 

results are based on the separation of training and testing 

data and includes four scenarios. The first split for 80:20 

reached 100% accuracy, F1 score, precision, and recall. 

The accuracy for the second split, 60:40 is 98.76%, while 

the F1 score is 98.07%, precision is 100%, and recall is 

96.22%. The third split for 40:60 reached an accuracy of 

98.20%, 97.22% for the F1 score, 100% for precision, and 

94.59 % for the recall. The accuracy for the last split 20:80 

is 83.20% and for the F1 score is 65.79%, for precision is 

100%, and for the recall is 49.02%. Figure-3 provides a 

comparative summary for all results of the 120’ Set and 

Figure-4 shows the percentage of the confusion matrix.  

Furthermore, the time taken to train the Siamese model is 

illustrated in Table-5.  

 

 
 

Figure-3. 120 Set of MQTT-IoT-IDS2020. 

 

Table-5. Training time for 120’ Set. 
 

Split Scenarios Training Time 

80:20 24.1s 

60:40 17.5s 

40:60 8.3s 

20:80 4.4s 
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Figure-4. Confusion matrix of the 120’ Set. 

 

B. Result of the Set 280 of MQTT-IoT-IDS2020. 

 

 
 

Figure-5. The 280 Set of MQTT-IoT-IDS2020. 

 

The second experiment was conducted on 

MQTT-IoT-IDS2020 using 280 data for training and 

testing. The results are illustrated in Figure-5. For the first 

scenario where 80% of the data is assigned for training 

and 20% for testing, which achieved 98.83% accuracy, F1 

achieved 98.18%, precision had 100%, and the recall 

achieved 96.43% accuracy. In the second scenario split of 

60:40, has 99.44% accuracy, the F1 has 99.15%, the 

precision has 100%, and the recall has 93.31%. The third 

scenario split 40:60 achieved 99.59% accuracy, F1 got 

99.38, the precision got 100%, and the recall got 98.78%. 

The last scenario split of 20:80 obtained 97.69%accuracy, 

F1 has 96.39%, the precision remains the same with the 

other split at 100%, and the recall has 93.03%. The 

training time is shown in Table-6 and confusion matrix is 

illustrated in Figure-6. 

 

 
 

Figure-6. Confusion matrix of the 280’ Set. 

 

Table-6. Training time for 280’ Set 
 

Split Scenarios Training Time 

80:20 2 m 34.8s 

60:40 1m 47.8s 

40:60 1m 5.0s 

20:80 29.2s 

 

C. Results for the Set of 520 of MQTT-IoT-IDS2020 
The last experiment was conducted on a larger 

amount of data, totalling 520 for both training and testing. 

In the first split, with 80 for training and 20 for testing, the 

accuracy result was 96.12%, with F1 score of 94.27%, 

precision 92.17%, and recall of 96.46%. In the second 

scenario with the split of 60:40 for training and testing, the 

accuracy was 97.4%, the F1 score was 96.09%, the 

precision was 95.98%, and the recall was 96.2%. In the 

third scenario, with the split of 40:60, the accuracy was 

98.27%, the F1 score was 97.4%, the precision was 

97.36%, and the recall was 97.44%. In the last scenario 

where the data was divided into 20 for training and 80 for 

testing, the accuracy was 98.41%, the F1 score was 

97.59%, the precision was 98.08%, and the recall was 

97.11%. The results are illustrated in Figure-7, the 

confusion matrix is shown in Figure-8, and the training 

time is shown in Table-7.   

 

3
1

.7
4

 

6
8

.2
6

 

0
 

0
 

3
1

.4
7

 

6
7

.2
9

 

0
 1
.2

3
 

3
1

.4
6

 

6
6

.7
3

 

0
 1
.7

9
 

1
6

.1
5

 

6
7

.0
5

 

0
 

1
6

.7
9

 

T P  T N  F P  F N  

P
E

R
C

E
N

T
A

G
E

 %
 

120'  SET CONFUSION 

MATRIX 

80:20 60:40 40:60 20:80

Accuracy F1 score Precision Recall

80:20 98.83 98.18 100 96.42

60:40 99.44 99.15 100 93.31

40:60 99.59 99.38 100 98.78

20:80 97.69 96.39 100 93.03

9
8

.8
3

 

9
8

.1
8

 

1
0

0
 

9
6

.4
2

 

9
9

.4
4

 

9
9

.1
5

 

1
0

0
 

9
3

.3
1

 

9
9

.5
9

 

9
9

.3
8

 

1
0

0
 

9
8

.7
8

 

9
7

.6
9

 

9
6

.3
9

 

1
0

0
 

9
3

.0
3

 

280'  SET RESULT 

80:20 60:40 40:60 20:80

3
1

.3
6

 

6
7

.4
6

 

0
 1
.1

6
 

3
2

.5
 

6
6

.9
3

 

0
 0
.5

5
 

3
2

.6
8

 

6
6

.9
 

0
 0
.4

 

3
0

.8
4

 

6
6

.8
5

 

0
 2
.3

 

T P  T N  F P  F N  

P
E

R
C

E
N

T
A

G
E

 %
 

280 '  SET CONFUSION MATRIX  

80:20 60:40 40:60 20:80



                                  VOL. 19, NO. 6, MARCH 2024                                                                                                               ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2024 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                381 

 
 

Figure-7. 520 Set of MQTT-IoT-IDS2020. 

 

 
 

Figure-8. Confusion matrix of the 520’ Set. 

 

 

 

 

 

 

 

 

Table-7. Training time for 520’ Set. 
 

Split Scenarios Training Time 

80:20 10m 46.1s 

60:40 7m 21.4s 

40:60 4m 22.3s 

20:80 1m 43.9s 

 

D. Comparative Analysis and Discussions  
 

 
 

Figure-9. Comparative analysis linier result. 

 

 
 

Figure-10. Comparative analysis result of  

the experiments. 

 

The results of the three experiments show 

accuracy, F1 score, precision, and recall for all three data-

sets (120, 280,520) and the four scenarios are above 95% 

Accuracy F1 score Precision Recall

80:20 96.12 94.27 92.17 96.46

60:40 97.4 96.09 95.98 96.2

40:60 98.27 97.4 97.36 97.44

20:80 98.41 97.59 98.08 97.11
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as shown in Figures 9, and 10. The only exception is 20:80 

split of with the lowest data-set of 120 sample, where the 

model was trained with only 24 samples. Additionally, the 

training time is reduced when using fewer samples, which 

align with the lightweight resources typically used in IoT 

networks. The highest performance result was achieved 

with100% accuracy when the experiment was conducted 

with a total number of 120 data points, split 80:20 for 

training and testing. The lowest accuracy was observed in 

the same 120 data-set specifically in the 20:80 split. 

Overall, the model’s performance in the conducted 

experiments with different scenarios is promising and 

could enhance IoT networks security. The MQTT-IoT-

IDS2020 dataset, to the best of our knowledge, has not 

been used in intrusion detection systems based on Few-

shot learning before, making it challenging to compare the 

results with similar approaches. However, using less than 

1% of the data, the proposed model shows outstanding 

performance compared to other works such as [23], [24], 

and [25]) which utilize the same dataset with a larger 

amount of data for developing IDS models based on 

various DL and ML techniques. In addition, reached close 

performance compared to recent work [26] conducted 

using an FSL prototypical network with multiclass 

classification evaluated with the same dataset.  

 

CONCLUSIONS 
In this work, we propose an intrusion detection 

system model that is suitable for IoT networks as it uses 

only few-shot learning instead of the massive data needed 

in traditional IDS based on deep learning and machine 

learning techniques. The proposed model is based on a 

Siamese network that mainly depends on a distance vector 

metric to compute and learn the similarity in two pairs of 

dataset samples. Since this model is for IoT security, we 

used the IoT dataset MQTT-IoT-IDS2020 to validate the 

model. The experiment was conducted in three different 

sets based on the number of data for each experiment as 

well as the division of the dataset into training and testing 

for each set. The results of the experiment vary based on 

the number of data used in the experiment. However, in 

general, the performance of the proposed model for binary 

classification is outstanding in terms of accuracy, 

precision, F1 score, and recall. The model shows that the 

Siamese network in IDSs performs effectively when the 

dataset is scarce. Furthermore, IDS based on FSL can 

contribute to reducing the number of resources as well as 

minimizing the complexity and training time in IDS, 

which is crucial to fulfilling the requirements of an IoT 

network, where only limited resources and lightweight 

devices exist. The plan is to evaluate the behaviour of the 

model with the full dataset. However, that is inapplicable 

due to the limitation of the current computation resources 

we use for the experiment. This can be a future work 

direction as well as evaluating the model with different 

datasets. 
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