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ABSTRACT 

A study is carried out to examine the influence of Hall effects on the peristaltic flow of Newtonian fluid through 

porous medium under the assumption of long wave length in a two- dimensional vertical channel. The non-dimensional 

flow governing equations with boundary conditions are solved for axil velocity and axial pressure gradient. The influence 

of various emerging parameters on the pumping characteristics are studied and explained with the aid of graphs. 
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INTRODUCTION 
A branch of science which deals with properties 

magnetism and electrically conducting fluids such as 

electrolytes, plasmas and salt water is called magneto 

hydrodynamics (MHD). In magneto hydro dynamics, 

magnetic fields can allow currents in a fluid which is 

electrically conducted, and it separates the fluid and 

changes the magnetic field. MHD is designed with the 

amalgam of Maxwell’s equations of electromagnetism and 

Navier-Stokes differential equations of fluid dynamics. 

Solution of these equations can be found either 

numerically or analytically. The impact of moving 

magnetic field on blood stream was concentrated by 

Agrawal and Anwaruddin (1984) and examined that an 

increase in magnetic field leads to an enrichment in fluid 

velocity. Elshahed and Haroun (2005) deliberate the effect 

of magnetic field on peristaltic flow of Johnson-Segalman 

fluid. Subba Narasimhudu and Subba Reddy (2017) have 

done their research to study the effect of Hall on the 

peristaltic flow of a Newtonian fluid in a channel.  

Moreover, the number of researchers have been 

investigated the fluid flow through a porous medium by 

using Darcy’s law Scheidegger (1974) and Varshney 

(1979) and Raptis and Perdikis (1983) have given some 

studies on this point. The first research work was 

presented by Elsehawey et al. (1999) on peristaltic flow 

through a porous medium and also examined the 

peristaltic motion of a generalized Newtonian fluid 

through a porous medium (2000). 

By taking above works into account, we examine 

the effect of Hall on the peristaltic stream of a Newtonian 

fluid through a permeable medium in a two-dimensional 

vertical channel under the presumption of long 

wavelength. A closed form solution is acquired for axial 

velocity and pressure gradient. The impacts of many 

arising parameters on the time- averaged volume flow rate 

are examined with the help of graphs. 

 

FORMULATION OF THE PROBLEM 

We assumed the peristaltic pumping of a 

conducting Newtonian fluid flow through a porous 

medium in a vertical channel of half-width 𝑎. A 

longitudinal train of progressive sinusoidal waves takes 

place on the upper and lower walls of the channel. For 

convenience, we confined our discussion to the half-width 

of the channel as shown in the Figure-1. The wall 

deformation is given by 

 

 2
( , ) sinH X t a b X ct




     
                              (2.1) 

 

Here 𝑏 represents the amplitude, 𝜆 the wavelength and 𝑐 is 

the wave speed.  

Under the presumptions that the channel length is 

an integral multiple of the wavelength 𝜆and the pressure 

contrast across the ends of the channel is a consistent, the 

flow becomes steady in the wave frame  ,x y   moving 

with velocity c away from the fixed (laboratory) frame

 ,X Y . The change between these two casings is given by 

 

 ,  ,   ,   and   ( )  ( ,  )x X c t y Y u U c v V p x P X t       (2.2) 

 

Where  ,  u v and  ,  U V  are the velocity components,  

p   and  P   are pressures in the wave and fixed frames of 

reference, respectively. 

 

 
 

Figure-1. Physical pattern. 

 

The flow governing equations in wave frame are  

 

0
u v

x y

 
 

 
                                                           (2.3)
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where  is density, g is acceleration due to gravity,   is 

electrical conductivity, 
0B  is the magnetic field strength,

m  is Hall parameter,  k  is permeability of the porous 

medium. 

The boundary conditions dimensional form are 

 

at       u c y H                                               (2.6) 

 

0 at       0
u

y
y


 


                                            (2.7) 

 

Presenting the dimensionaless quantities 

 
2 22

' ' ' ' ' ' ' 2 0

2
, , , , , , , , , , ,

a Bx y u v a pa ct H b q k
x y u v p t h q M Da

a c c c a a ac a


 

      
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Into equations (2.3) to (2.5), we get 

 

0
u v

x y

 
 

 
                                                           (2.8) 
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 (2.9) 
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1
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(2.10) 

 

Here Re  is the Reynolds number, M  is the 

Hartmann number, 
2

c
Fr

ag
  is the Froude number, and 

Da  is the Darcy number.  

Using extended wavelength (i.e., 1 ) 

approx., the equations (2.9) and (2.10) become  

 
2

2 2

2

Reu p
N u N

x Fry

 
   


                            (2.11) 

 

0
p

y





                      

                                          (2.12) 

 

where 
2

2

1

1

M
N

Dam
 


.  

From equation (2.12), it is understood that p  is 

function of x . Then (2.11) can be written as 

 
2

2 2

2

Reu dp
N u N

dx Fry


   


                            (2.13) 

 

The boundary conditions in non-dimensional 

form are given as 

1 at 1 sin 2u y h x                   (2.14) 

 

0 at 0
u

y
y


 


     

                            (2.15) 

 

Knowing the velocity, the volume flow rate q  in 

a wave frame is given by 

 

0

h

q u dy                                                           (2.16) 

 

The instantaneous flow Q ( , )X t  in the laboratory 

frame is 

 

 
0 0

( , ) 1
h h

Q X t U dY u dy q h                   (2.17) 

 

The Q  over one period T
c

  
 

 of the 

peristaltic wave is given by 

 

0

1
1

T

Q Q dt q
T

                                             (2.18) 

 

SOLUTION 
Cracking equation (2.13) together with boundary 

conditions (2.14) and (2.15), we get 

 

2

1 Re cosh
1 1

cosh

dp Ny
u

dx Fr NhN

            
  (3.1) 

 

The volume flow rate q  in a wave frame of 

reference is given by 

 

3

1 Re sinh cosh

cosh

dp Nh Nh Nh
q h

dx Fr NhN
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 (3.2) 
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From equation (3.3), we write 

 

  3 cosh Re

sinh cosh

q h N Nhdp

dx Nh Nh Nh Fr


 


   (3.3) 

 

The dimensionless pressure rise p  per one 

wavelength is defined as  

 

1

0

dp
p dx

dx
        (3.4) 

 

As Re 0  and Da  , our outcomes 

coincides with the consequences of Subbanarasimhudu 

and Subba Reddy (2017).  

 

RESULT AND DISCUSSIONS 

Figure-2 depicts the difference of pressure rise 

p  with time-averaged flow rate Q  for various values of 

Hartmann number M with 0.1Da  , Re 0.5 , 2Fr  , 

0.5   and 0.2m  . It is identified that, the time-

averaged flow rate Q  increases in the pumping region 

with rising values of M , while it decreases in both the 

free-pumping and co-pumping regions with increasing M .  

The p  with Q  for diverse values of Hall 

parameter m with 0.1Da  , Re 0.5 , 2Fr  , 0.5 
and 1M   is portrayed in Figure-3.  It is noticed that, the 

Q declines in the pumping region and upsurges in both the 

free-pumping and co-pumping regions on cumulative m .     

Figure-4 demonstrates the p  with Q  for 

different values of Da with 0.2m  , Re 0.5 , 2Fr  , 

0.5   and 1M  . It is understood that, the Q  decreases 

in the pumping region and increases in both the free-

pumping and co-pumping regions with increasing Da .     

The p  with Q  for dissimilar values of 

Reynolds number Re with 0.2m  , 0.1Da  , 2Fr  , 

0.5   and 1M   is Figure-5. It is spotted that, Q  

increases with increasing Re in all the three regions. 

Figure-6 depicts the p  with Q  for altered 

values of Fr with 0.2m  , Re 0.5 , 0.1Da  , 0.5   

and  1M  . It is detected that, the Q  decreases with 

increasing Fr  in all the three regions. 

The p  with Q  for distinctive values of  with

0.1Da  , Re 0.5 , 2Fr  , 1M   and 0.2m   is 

exposed in Fig. 7. It is found that that the Q  increases 

with increasing    in pumping and free pumping regions 

and decreases in the co-pumping region. 

 

CONCLUSIONS 
In this article, we explored the effect of Hall on 

the peristaltic flow of a fluid through a porous medium in 

a vertical two-dimensional channel under the assumption 

of long wavelength approximation. An analytical method 

adopted to find the solution for the velocity field and 

pressure gradient. It is perceived that, the Q in the 

pumping region is increases with increasing values of M , 

Re and  , while it experiences declinement with 

increasing m , Da  and Fr .  

 

 
 

Figure-2. The p  with Q  for various estimations of M with

0.1Da  , Re 0.5 , 2Fr  , 0.5   and 0.2m  . 

 

 
 

Figure-3. The p  with Q  for different values of Hall 

parameter mwith 0.1Da  , Re 0.5 , 2Fr  , 0.5   
and 1M  . 
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Figure-3(i). Enlargement of Figure-3. 

 

 
 

Figure-4. The p  with Q  for different values of Darcy 

number Da  with 0.2m  , Re 0.5 , 2Fr  , 0.5   
and 1M  . 

 

 
 

Figure-5. The p  with rate Q  for altered values Re with

0.2m  , 0.1Da  , 2Fr  , 0.5   and 1M  . 

 
 

Figure-6. The p with Q  for dissimilar values of Fr with

0.2m  , Re 0.5 , 0.1Da  , 0.5   and 1M  . 

 

 
 

Figure-7. The p  with Q  for distinctive values of  with

Re 0.5 , 2Fr  , 1M   and 0.2m  . 
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