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ABSTRACT 

In this paper, the question on the expediency of checking the model, the model checking method is applied to, is 

discussed. To this end, corresponding technique has been proposed. Named technique is based on differentiation between 

the concepts of analytical plane of model perception and the concepts of corresponding implementation plane. The 

technique is grounded on the following constituents: Kripke structure - for analytical interpretation of formal specification; 

Temporal Logic of Actions and corresponding formalism - as the instruments for shifting from the analytical plane to the 

implementation one; TLC model checker - to examine the correctness of formal specification – with respect to the concepts 

of implementation plane. To prove the proposed technique, the case study has been conducted. To this end, the algorithms 

from the spacecraft domain have been considered. To verify the resulting specifications, two alternative implementations 

of TLC model checker have been applied. 

 
Keywords: adequacy, correctness, formal specification, model checking, TLA, TLC. 

 

1. INTRODUCTION 

 

1.1 Distinctive Features of Model Checking Technique 

Nowadays, model checking techniques and 

corresponding implementations - model checkers (MCs) - 

are broadly adopted during the developing of diverse 

safety-critical systems, e.g., real-time operating systems 

(RTOS) [1], modern processors design solutions (DSs) [2], 

control systems in Finnish nuclear industry [3], virtual 

cloud resources [4], etc. The distinctive features of these 

techniques can be formulated as follows: 

 

a) Decision on system property specification correctness 

is carried out on the basis of corresponding model, 

generated through model checking of formal 

specification (FS). 

b) In contrast to the alternatives, e.g., deductive 

verification, equivalence checking, the process of 

MCs utilization can be thoroughly automated. This 

aspect is of topical importance, because of the 

complexity of modern software system’s DSs, e.g., 

the Amazon Web Services (AWS) [5]. 

Both aforementioned features of MCs 

demonstrate the drawback and the advantage, respectively. 

 

 

 

1.2 Peculiarities of Work Conducted 

This paper addresses the first aforementioned 

feature, i.e., the necessity to deal with the model, rather 

than a system itself. Here comes the following peculiarity: 

when considering the model checking technique and its 

application in certain domains, the problem domain needs 

to be specified in an unambiguous manner. To this end, 

the following assumptions have been made: 

 

a) An engineering process is approached as a sequence 

of the steps - requirements analysis, designing, 

implementation, validation. 

b) MC technique is supposed to be applied during the 

designing stage of engineering process. 

c) Developer’s perception of system under design is 

addressed with iteratively created and refined 

artifacts. To this end, Manfred Broy’s artifact-based 

approach to engineering process formalization has 

been adopted. With respect to this approach, an 

“artifact” is considered as a document with structure 

and content, i.e., an outcome of certain step [6]. 

The proposed technique is intended to be applied 

during the designing stage of engineering process. To this 

end, with respect to the aforementioned features of MCs, 

the DSs of a system under development, e.g., the 
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diagrams, are treated as the input data, the FSs to be 

synthesized from. After that, the MC technique is 

implicitly applied to the FS: through corresponding FSM 

(Finite-state Machine), i.e. transition system. Here comes 

the conceptual breach prompting answering the following 

question: does the developer’s analytical perception of the 

DS correspond to the FSM generated through the 

automated model checking of the FS, and, as an outcome, 

can we trust the results of such verification? Here the 

differentiation between the concepts of analytical and 

implementation planes arises. Moreover, when addressing 

the implementation plane, the following positions need to 

be worked out: choosing the appropriate temporal logic; 

applying the “right” formalism, making it possible to 

conduct the verification in an automated manner; adopting 

proved MC technique. 

To answer the question, the operative adequacy 

checking technique is required to be implemented. To this 

end, the following assumptions have been made: 

 

a) When applying the MC technique, the FS is 

approached as a prototype, the FSM is synthesized 

with respect to. 

b) “Adequacy” concept is stressed with respect to the FS 

and corresponding FSM. 

Grounding on the importance of such technique 

elaboration is provided below. 

The rest of the paper is organized as follows. In 

section 2, the analysis of the related work is conducted. In 

section 3, the description of the proposed technique is 

presented. In section 4, the results of experimental studies 

are discussed. In section 5, the conclusions and the 

thoughts on further research are given. 

 

2. LITERATURE REVIEW 

 

2.1 Grounding on the Instruments Applied 

Addressing the assumptions provided in the 

previous paragraph, the following steps have been made: 

 

a) Temporal Logic of Actions (TLA) [7], by Leslie 

Lamport, has been chosen as the basis because of the 

following factors: massive industrial use [1-4], 

applicability to concurrency checking [8], proved 

instrument to be applied in safety-critical domain, 

e.g., the railway control applications [9]. Moreover, 

TLA has been successfully used in novel Software-

defined Networking (SDN) domain – to verify the 

rules of SDN-compatible switch [10]. 

b) To represent the FS in a form applicable to automated 

MC, the mathematically strict TLA+ formalism has 

been adopted [11]. 

c) To conduct the verification by way of MC, the TLC 

checker has been applied [7]. 

d) To group the TLA, TLA+ and TLC, the TLA Toolbox 

has been utilized [12]. 

Among the preconditions to these steps is the 

possibility to represent the FS with a single temporal 

formula, which is critical in terms of scalability, 

modularity and easiness of shifting the grain of atomicity 

of the FS. 

 

2.2 Adequacy Checking Techniques Analysis 

Taking into consideration the peculiarities of 

problem domain approached, the obvious way to do the 

adequacy checking is a topological one, when the 

transition system, i.e., the model, is treated as a graph, and 

typical approach includes resolving the problem of graph 

isomorphism. Though, due to the NP-completeness of this 

task [13] and significant size of state space, it seems to be 

infeasible in practice. 

Depending on the artifact type, the FS is 

synthesized from (e.g., DS, implementation), the 

approaches to FS synthesis and corresponding adequacy 

checking vary significantly. For instance, FS adequacy has 

been considered with respect to the quality of tests 

obtained through the automated FS-based structural test 

case generation [14]. The DS has been considered here as 

an input data for FS synthesis. It has been found out that 

sticking to existing FSM-based coverage criteria, e.g., 

state, transition, decision coverage, provide even worse 

results, comparing to randomly generated tests. The 

semantics of FS language (RSML, Requirements State 

Machine Language) applied and the peculiarities of 

problem domain (flight-guidance system) have been 

proclaimed to be the reason to that. NuSMV symbolic 

model checker has been applied as an instrument. 

FS adequacy delivering is tightly bound with an 

effect of FSM state space explosion. A technique to 

mitigate it, i.e., BDDs (Binary Decision Diagrams), is 

implemented in NuSMV method. As a case study, named 

method has been applied to foster the single-failure 

tolerance of nuclear reactor protection system [15]. FS 

adequacy has been approached here in terms of its 

completeness: FS encompasses not only the application 

logics, but also a hardware plane (hardware component 

failures, communication delays).  

In contrast to the aforesaid, when the DS has 

been approached as an input data for the FS synthesis, the 

adequacy metrics can be applied with respect to the 

structure of software system implementation, e.g., 

Modified Condition and Decision Coverage (MC/DC) 

criterion [16]. It has been stated that manipulation with 

implementation structure to foster the MC/DC criterion 

has no positive effect on the adequacy of obtained tests. 

On the contrary, the significant effect has been obtained 

through increasing the coverage completeness, on pair 

with costs increase though. Such implementation coverage 

can be delivered through the in-code assertions, e.g., VCC 
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(Verifying Concurrent C) applied to verify the Microsoft 

Hyper-V hypervisor [17]. To check the FSM, an SMT 

(first-order Satisfiability Modulo Theories) solver has 

been utilized. Semantic aspect has been addressed here 

with a “typestate” notion. Though a completeness criterion 

can be satisfied by exhaustive coverage with assertions, a 

substantial drawback here is that the number of such 

assertions can significantly outpass the size of code 

verified. This aspect both complicates code analysis and 

increases related time costs. 

By elaborating the direction, where the DS is 

considered as an input data, in given paper, the adequacy 

aspect is approached in terms of providing the transparent 

mechanism for “shifting” between the DS and 

corresponding FS, thus, diminishing the semantic 

discrepancy between the FS language and problem 

domain. 

 

3. MATERIALS AND METHODS 

 

3.1 Analytical Plane Concepts Formalization 

 

3.1.1 Model checking task formulation 

Let the model checking task is formulated as 

follows: 

 

=|,bM ,        (1) 

 

where M  - Kripke structure, defined over an AP  set of 

atomic prepositions; b  - system behavior as a sequence of 

states - an analytical representation of system property;   

- temporal formula to be satisfied in each element of b  

sequence, i.e., FS of b . The FS is implemented as a 

temporal formula to make it possible to check b  in an 

automated manner with MC applied. To this end, the TLA 

temporal logic, corresponding TLA+ formalism and TLC 

model checker have been brought to the use. 

The core idea inside the proposed technique is 

conceptually similar to the one that takes place during the 

test-driven development process (TDD): the tests are 

created first, and then the software module satisfying these 

tests is made [18]. Similarly, with respect to (1), M  

structure is approached conceptually as the tests, and   

temporal formula, implemented on the basis of chosen 

formalism - as the software module satisfying these tests. 

 

3.1.2 Kripke structure as the mathematical model 

Let M  structure (model) over the AP  set is 

defined as follows [19]: 

 

LRSSM ,,, 0= ,       (2) 

 

where S  – total set of states: SS 0  – set of initial 

states; 
2SR  – set of transitions between states; 

APSL 2: →  – states labeling function. 

It should be noted that (2) structure differs from 

typical automaton by lacking the transitions labeling. This 

peculiarity simplifies model checking process, making it 

possible to represent the behavior of reactive system with 

potentially infinite set of states on the basis of a finite one. 

Let b  is an infinite sequence of states, formed 

through ( ) Rss ,  transitions, where Ss  - current state, 

( ) SsRs =  – subsequent state: 

 

...,,...,, 10 ll ssssb = ,       (3) 

 

where ( )01 sRs = , ( ) ( )( )012 sRRsRs == ,…, 

( ) ( )( ) ( )021 sRsRRsRs l
lll === −− , where l  upper index 

is the number of times the R  has been applied, e.g. the 

power of composition on the basis of R . To sum up, 

( )1,...,1,0 −= lfSs f  the following property takes 

place: ( ) 1+= ff ssR . Starting from Ssl  , there is 

different relation – ( ) ll ssR = , ( )( ) ll ssRR = ,…, required 

to satisfy the totality property of S . 

To form the basis for FS synthesis, the concept of 

“trajectory” is applied: ( ) ( ) ( ) ( )lsLsLsLbL ,...,, 10= , where 

lsssb ,...,, 10= , comparing to b , is a finite sequence. 

Corresponding elements are the elements of AP  set: 

 

( )
f

fsLAP = , lf ,...,1,0= ,      (4) 

 

where DVAP = ,   Nn

jjvV


=
=

1
 – state variables set; 

  Nz
kkdD

== 1  – set of state variable values. 

In case of Nm  trajectories specified, (4) can 

be generalized as follows: 

 


m

i

iAPAP

1=

= ,        (5) 

 

where Bm = :  ibB = ; iAP  – i -th set of atomic 

prepositions to specify Bbi   trajectory. 

 

3.1.3 Events formalization 

By applying the principle of dichotomy, 

Sss  , : ( )sRs = , ( ) APsLap   and 

( ) APsLpa   elements are approached as pre- and 

post-conditions to the events prompting the ( ) Rss ,  

transition between the adjacent states Sss , : 

( ) ( ) ( ) ( ) dvdvsLsL jj = ,,, , respectively, where 

ddDdd  ,, , ( ) ( ) APsLapdv j =,  – precondition 
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to j -th event, ( ) ( ) APsLpadv j =,  – post-

condition. 

An event is analytically represented as 

implication, modified with X  (neXt) temporal operator 

[20]: 

 

( ) ( )( )
( ) ( )( )1,,

,,

+

→

kjkj

jjj

dvXdv

dvXdve
,      (6) 

 

where   operator represents the tautology. 

Expression (6) means that at certain current 

simulation step, associated with Ss  state, 

( ) ( ) ( ) APsLsLdv j  \,  atomic preposition takes place – 

equals “true”: ( ) 1, dv j . As an outcome of je  event, 

( ) ( ) ( ) APsLsLdv j  \,  atomic preposition becomes 

“true” – ( ) 1, dv j  – in the subsequent state ( ) SsRs = , 

addressed with X  operator. 

If consider je  as a function, then 

( ) ( ) ( )  ( )jj edomdvssL == ,\ , 

( ) ( ) ( )  ( )jj erandvssL == ,\ . Thus, it can be approached 

as a relation: 

 

( ) ( ) ( ) ( )ssLssLe j \\: → ,       (7) 

i.e. ( ) ( )dvdve jjj ,,:  . 

 

Semantic property of X  temporal operator is 

depicted below: 

 

( )( ) ( )( )dvsMdvXsM jj == ,|,,|, ,     (8) 

 

where ( )( )dvXsM j = ,|,  expression means that, with 

respect to current Ss  state of transition system, 

formalized with M  (2), ( )dvX j ,  temporal formula is 

true;   operator depicts the tautology; ( )( )dvsM j = ,|,  

expression means that, with respect to a subsequent state 

( ) SsRs = , ( )dv j ,  atomic preposition is true. 

 

3.1.4 Model checking task generalization 

To encompass both positive and negative 

outcomes of MC - in terms of errors presence/absence in 

the FS, expression (1) has been extended as a disjunction: 

 

( ) ( )( ) 1|,|, =  bMbM ,      (9) 

 

which is a tautology. In case of ( ) 1|, =bM , no errors, 

e.g., unreachable states, deadlocks, have been faced during 

the MC. Otherwise, ( ) 1|, bM  equality takes place. 

In terms of the expediency of MC technique 

application, both disjoints in (9) represent successful 

scenarios. To make this statement relevant, both of the 

following questions need to be positively answered first: 

 

a) Is implementation of   temporal formula - FS - 

correct? 

b) Is the model generated through the MC adequate? 

An approach to answering these questions is 

provided below. 

 

3.1.5 Setting the relations between the concepts of  

         both planes 

To foster answering the first question, the 

transparent and unambiguous “bridge” between the 

analytical representation of   and its implementation on 

the basis of specified formalism need to be constructed 

(Figure-1). Named formalism is devoted to be an 

instrument making it possible to check the correctness of 

the FS in an automated manner. 

 

 
 

Figure-1. Differentiation between the analytical and 

implementation planes. 

 

In Figure-1, the external dashed squares represent 

the conceptual planes discussed. 

 

The correctness of the FS is approached in a 

bipartite manner - syntactic correctness and the structural 

one: 

a) Syntactic correctness is addressed with syntactic 

analyzer. 

b) Structural correctness should be delivered through the 

approach described. 

To check the adequacy, the concept of “MSA” 

(Model Structural Adequacy) has been applied [21]. 

Peculiarities of the approach proposed are depicted in 

Figure-2. 
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Figure-2. Relations between the DS, FS, M  and 

M   artifacts. 

With respect to Figure-2, developer’s perception 

of the FS is addressed with M  structure (2). At the same 

time, the FS, synthesized from the DS, is supposed to be 

the grounding, the 'M  transition system is generated from 

in an automated manner. In accordance with this, proposed 

approach is aimed at checking the adequacy of 'M  artifact 

in a topological manner: M  and 'M  artifacts are treated 

as the graphs to be compared to each other with respect to 

the metrics chosen. Moreover, positive decision on the 

adequacy of resulting 'M  structure is also supposed to be 

the implicit demonstration of FS correctness. 

 

3.1.6 Algorithm inside the proposed technique 

To solve the MC task (9), corresponding 

algorithm has been proposed (Figure-3). 

 

 
 

Figure-3. Conceptual view of the approach to model 

checking task resolving. 

 

With respect to Figure-3, correctness of the FS is 

supposed to be checked first (block 1) in accordance with 

bipartite manner described above (Figure-1). As a result of 

positive outcome, the MC technique is supposed to be 

applied (block 3), otherwise - the FS needs to be refined 

(block 2). Peculiarity of the approach applied: M   

adequacy checking is performed after the MC (block 4). 

Otherwise, M   still would not be generated. In case of 

M   inadequacy (block 6), it has to be refined. Otherwise, 

the truth of ( )=|,bM  statement is checked (block 5). In 

case of ( ) 1|, bM , DS refinement and subsequent 

synthesis of corresponding FS need to be performed 

(block 7). 
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3.2 Implementation Plane Formalization 

 

3.2.1 Events implementation 

Actions are the elementary constructs of TLA+ 

specification [7]. To specify the actions, the events – (6) 

and (7) - need to be implemented first. Then these 

implementations are approached as action constituents. To 

do so, the following steps have been made. 

 

Step 1.  Initial state specification. Correspondence 

between the notions of “state label” - ( )sL , Ss  

(2) - and state specification -   - taking place in 

the implementation plane has been established: 

 

( )  1,0: →sL ,      (10) 

 

where   ( )ran=1,0  – Boolean domain: 0 - “false”, 1 - 

“true”. 

To start model checking, the initial state 

specification is approached as a conjunction over the 

elements of ( )0sL , SSs  00  (2): 

 

( )( ) ( ) ( ) ( )0,...0,0, 210 nvvvsL = ,   (11) 

 

where ( ) ( ) APsLv j  00,  [22]. 

 

Step 2.  Event specification. To implement the analytical 

concept of event (6) on the basis of TLA+ 

formalism, an “if-then-else” construct has been 

utilized [23]: 

 

( )( )( ) ( )
( )dvelse

dvthensLife

j

jj

=

=

:

:0
,    (12) 

 

where je  - TLA+ implementation of je  (6); ( )( )0sL  - 

precondition for the event to take place; Vv j   - copy of 

Vv j   applied with respect to the subsequent state (8) - 

as an outcome of X  temporal operator utilization. As 

dvs j : , then, in case of 1 , dvs j  : , where 

( )sRs = . Depending on D  value, ( )dv j = :  operation 

can be performed up to 1−z  times, i.e., je  event can take 

place up to 1−z  times (4). On contrary, in case of 0 , 

( )dv j = :  expression means that Vv j   does not change 

its value during ( ) Rss ,  transition. Here comes the 

necessity to formalize an “empty event” concept, similar 

to (6): 

 

( ) ( )( )
( ) ( )( )dvXdv

dvXdve

jj

jjj

,,

,,0



→
,    (13) 

 

where; je0
 - analytical interpretation of j -th empty 

event. Comparing to (6), Vv j   does not change its value 

with X  operator application: dvs j  : . 

Concept of an empty event (13) is based on 

Hoare’s empty statement rule [24]: 

 

( )  ( ) dvskipdv jj ,, ,     (14) 

 

where skip  statement does not change the state of (2) 

automaton. 

Thus, depending on   value, either event (6) or 

empty event (13) takes place. Here comes generalization 

property of event implementation (12) (Figure-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-4. Relations between the concepts of (6), (12) 

and (13). 

 

In Figure-4, generalization property of (12) is 

depicted with “aggregation” relation. 

Similar to (12), preconditions to the subsequent 

events are obtained in a like manner. 

 

3.2.2 Actions specification 

Actions are the distinctive concepts of TLA. To 

specify an action, Vv j  , ( )jvs   value needs to be 

assigned. Thus, total number of events / empty events to 

be specified to construct an action equals nV = . 
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To implement empty event (13) on its own, the 

“unchanged” operator ( u ) of TLA+ formalism has been 

applied: 

 

( )( ) ( )( )jjjj vsvvsvu ,,:  ,    (15) 

 

To shift from the concept of “event” to TLA-

concept of “action” - function specifying the transition 

between the adjacent states [7], events / empty events are 

formalized per each Vv j  . To group these specifications 

together, conjunction operator has been applied: 

 

( )( ) ( )( )

( )( )
( )( )

( )( ) ,,...

...,

,...

...,,

11

11

2211

nn

jjj

jj

j

vsvu

vsvue

vsvu

vsvuvsvua









++

−−
                 (16) 

 

where ja  - j -th action built upon single je  event and 

1−n  empty events. 

With respect to (16), depending on the number of 

non-empty events, proportions between (12) and (15) 

constituents can vary. 

Architecture, demonstrating relations between the 

concepts of analytical and implementation planes, 

including actions, is depicted in Figure-5. 

 

 
 

Figure-5. Concepts stratification. 

 

In Figure-5, jhnjjh +−= ;,...,1,1,...,2,1 . 

Diagram is intended to be applied as a template to shift 

between the concepts of analytical and implementation 

planes, delimited with dotted squares. Moreover, two 

hierarchical layers (stratas) have been distinguished. 

Upper strata - 2 - encompasses solely a pair of elements: 

( ) Rss ,  - from analytical plane (2), (16) - from 

implementation plane. Stratification has been applied to 

emphasize the conceptual breach between the “events” and 

the “actions”. Events here are “gluing” constituents - 

elementary building blocks to construct the resulting 

temporal formula   (1) to be checked on the basis of (2). 

So far, the specified concept of “action” (16) does 

not provide the way to reason on system behavior b  (1). 

To do so, further stratification needs to be conducted to 

encompass also the behavior [25]. 

 

3.2.3 Behavior specification 
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Behavior specification is constructed with respect 

to a template provided in [7]. To this end, G  (Globally) 

temporal operator has also been used: 

 

( )( )

































−
−

1
1

2
2

10

0

...

......

...

l
l

f
f

aX

aX

aX

aXa

GsL ,    (17) 

 

where l  actions prompt corresponding transitions between 

1+l  states - elements of b  ; upper index of 
fX  

expression means that X  temporal operator has been 

applied f  times, e.g., 22
2 aXXaX  , etc. Upper dash of 

fa  means that corresponding action has been re-

enumerated with respect to the sequence, set with X  

operators. Thus, in (17), implementation of behavior is 

encapsulated: 

 

1
1

2
2

10

......

...

−
− 



l
l

f
f aXaX

aXaXab
,     (18) 

 

where b   - TLA+ implementation of b   (Figure-6). 

 

 
 

Figure-6. Resulting stratification of the FS. 

 

In Figure-6, three hierarchical layers have been 

distinguished, where upper strata covers the concepts of 'b  

and corresponding implementation b   (18). 

To generalize (17) for the case of multiple behaviors, with 

respect to (5),   can be rewritten as follows: 

 

( )( )  mbbbGsL  ...210 ,  

 (19) 

 

where   operator defines the alternativeness of behaviors. 

The diagram, depicted in Figure 6, and expression (19) 

provide the mechanism to obtain the resulting temporal 

formula   (1) on the basis of Kripke structure (2). 

 

3.3 Adequacy Checking 

To prove the proposed technique, M  and M   
structures have been stepped up from the topological 

viewpoint: corresponding transition systems have been 

considered as graphs to be compared: 

a) Let RSG ,=  is a structural constituent of M  

artifact (Figure-2), where S  - set of vertices, R  - set 

of edges between the elements of S ; G  represents 

developer’s analytical perception of the DS. 

b) 2. Let RSG = ,  is a structural constituent of M   

artifact (Figure 2), where S   – set of vertices, R  - 

set of edges between the elements of S  ; G   is 

synthesized in an automated manner through the 

model checking with respect to Figure-3. Its metrics 

are obtained from the listing of model checking 

results. 
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c) 3. Statement on FS adequacy is made on the basis of 

the following conditions: SS =  - numbers of 

distinct states found are equal; ( ) ( )GdepthGdepth =  - 

depths of space search are equal. In case of both these 

conditions are satisfied, the FS is considered as an 

adequate one. 

Applicability of the proposed technique has been proven 

through the case study provided below. 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Technique Peculiarities Demonstration 

To demonstrate the peculiarities of the proposed 

technique, a case study has been conducted: fragment of a 

flowchart of spacecraft orientation control unit has been 

considered (Figure-7): 

a) Control equipment (CE) status flag predefines the 

forthcoming scenario (Block 1). 

b) In case of 0, power delivery system (PDS) needs to be 

started (Block 3). 

c) Otherwise, configuration control unit (CCU) should 

be started first (Block 2). 

 

 
 

Figure-7. Fragment of the flowchart. 

 

In accordance with Figure 7, the following 

scenarios can be contemplated (depicted as the sequences 

of block numbers): 1, 3; 1, (2, 1), 3. 

To create corresponding FS, the V , D  and the 

resulting AP  sets need to be synthesized first (4): 

 321 ,, vvvV = , where ( )3,2,1= jVv j  represents j-th 

block;  1,0=D , where Dd  is either “true” or “false”; 

( )  ( ) 1,0, jj vvAP = : ( ) APv j 0,  – fragment of code, 

represented with j-th block, yet to be executed, ( ) APv j 1,  

- has already been executed. 

With respect to Figure-7, depending on the value 

of CE flag, the set of initial states is as follows: 

  SssS = 100 , : ( ) ( ) ( ) ( ) 0,,0,,0, 3210 vvvsL = , 

( ) ( ) ( ) ( ) 0,,0,,1, 3211 vvvsL = . Corresponding state diagram 

covering all the elements of S  is provided in Figure-8. 

 

 
 

Figure-8. State diagram for the flowchart fragment. 

 

In Figure-8, graph G  is depicted: 5=S ; depth 

of state space search - 3 - number of states the “longest” 

behavior is built of. 

In Figure-8, there are two alternative behaviors – 

21,bb : 201 , ssb = ; 4312 ,, sssb = , representing the 

scenarios of system functioning. Dashed “Init”-square 

encompasses the elements of 2: 00 = SSS , with L  

function applied. Transitions between the states are 

marked with Hoare triples: 

( ) ( ) ( ) ( ) ( ) 1,,0,:, 332020 vvssLRss =  - with 

( )  ( ) 1,0, 333 vev  triple, where 3e  – the event prompting 

the transition: ( ) APv 0,3  - precondition for 3e  event, 

( ) APv 1,3  - post-condition; the same triple takes place 

for ( ) ( ) ( ) ( ) ( ) 1,,0,:, 334343 vvssLRss =  transition. 

With respect to ( ) ( ) ( ) ( ) ( ) 1,,0,:, 223131 vvssLRss =  

transition, ( )  ( ) 1,0, 222 vev  triple is applied. Thus, there 

are two events - 2e  and 3e , prompting the transitions 

between the states. 

Thus, specification of 1b  is as follows: 

( )( )  301 aGsL  . With respect to (12) and (16), 

( ) ( )( ) ( ) ( )( )3333313 :1:00 vvelsevvthenvvifa =−=====

( )( ) ( )( )2211 ,, vsvuvsvu  . 

Specification of 2b  is as follows: 

( )( )  3212 XaaGsL  . Basing on (12) and (16), 

( ) ( )( ) ( ) ( )( )2222212 :1:01 vvelsevvthenvvifa =−=====

( )( ) ( )( )3311 ,, vsvuvsvu  . 
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The resulting TLA+ FS, encompassing both 

behaviors ( 1b  and 2b ), is a disjunction: 

( )( ) ( )( )( ) ( ) 3231021 XaaaGsLsL   . 

Thus, with respect to (1), the model checking task can be 

formulated as follows: 2121 |,,  =bbM . 

Complete specification is provided in an 

Appendix A, where “Spec” is the TLA+ representation 

resulting temporal formula  . As an outcome of TLC 

model checker application to the FS, the metrics of G   

graph are provided in corresponding listing: no deadlocks 

have been reached, total number of distinct states found - 

5, the depth of state space search - 3. 

With respect to the results obtained, by 

comparing the metrics of G  and G   graphs, the resulting 

M   model can be characterized as an adequate one. The 

correctness of the FS has been checked in an automated 

manner by applying the built-in instruments of TLA 

Toolbox. To estimate corresponding time costs, two 

alternative implementation of TLC model checker have 

been considered: the one, relying on the Breadth-first 

Search (BFS) technique, and the implementation based on 

the Depth-first Search (DFS) technique. 

An experiment has been conducted on the 

following platform: TLC checker version - 2.14; Java 

Runtime Environment (JRE) version - 64 bit, build 

1.8.0_251-b08; 8 threads, 3.8 GHz; random access 

memory capacity: 16 GB. 

Obtained results: 895.0=BFSt  sec, 

355.0=DFSt  sec, where BFSt  - average value of BFS-

related time costs, DFSt  - DFS-related one. Each value is 

an average of ten measures. 

Thus, it can be concluded that, with respect to a 

scenario considered, the DFS-based implementation of 

TLC checker is about 2.52 times more efficient, 

comparing to the BFS-alternative, in terms of 

corresponding time costs. 

 

4.2 Sophisticating the Case Study 

To generalize the outcome of proposed technique 

implementation, more complex scenario has been 

considered: software component of the on-board digital 

computer complex (DCC) of a spacecraft has been 

approached. Corresponding algorithm is devoted to control 

an initial state of the registers of the on-board computer of 

the input/output unit of DCC: 

 

a) Algorithm block-diagram has been considered as an 

input data. 

b) Total number of state variables - 18. 

c) Total number of blocks – 77 (Figure 9). 

In Figure-9, dashed square Z depicts the construct 

repeating 15 times, but with different variables. Thus, the 

resulting number of blocks is as follows: 772155 =+ . 

 

Table-1. Spatial characteristics of synthesized and verified specifications. 
 

No. n  S  

BFSS  

DFSS  
BFSS

S
 


DFSS

S
 





BFS

DFS

S

S
 

depth , 

vertices 

1 4 82 130 700 0,631 0,117 5,385 10 

2 6 342 534 4519 0,640 0,076 8,463 15 

3 7 702 1086 11189 0,646 0,063 10,303 18 

4 7 712 1096 11927 0,650 0,060 10,882 19 

5 8 1432 2200 28156 0,651 0,051 12,798 22 

6 10 5742 8814 141343 0,651 0,041 16,036 27 

7 11 11502 17646 317237 0,652 0,036 17,978 30 

8 11 11512 17656 328775 0,652 0,035 18,621 31 

9 12 23032 35320 726652 0,652 0,032 20,573 34 

10 14 92142 141294 3367327 0,652 0,027 23,832 39 

11 15 184302 282606 7287605 0,652 0,025 25,787 42 

12 15 184312 282616 7471943 0,652 0,025 26,438 43 

13 16 368632 565240 16049788 0,652 0,023 28,395 46 

14 17 737272 1130488 34311398 0,652 0,021 30,351 49 

15 18 1474552 2260984 73046458 0,652 0,020 32,307 52 
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Figure-9. Fragment of algorithm block-diagram. 

 

In Table-1, No - the number of dashed blocks 

(Figure 9), n  - number of state variables, S  - total 

number of distinct states found during the model checking, 


BFSS  - number of sates generated through BFS-search, 


DFSS  - through DFS-search. It can be seen that spatial 

characteristics of BFS-implementation of the TLC method 

are significantly better, comparing to the DFS-alternative: 

up to 32 times. 

No deadlocks have been reached during the 

verification. With respect to a proposed technique, the 

metrics of G  and G   graphs have been found to be equal. 

 

5. CONCLUSIONS 

Within this paper, we have proposed the 

technique for checking the adequacy of model, the model 

checking method is devoted to be applied to. 

With respect to the proposed technique, the 

concepts of analytical and implementation planes have 

been distinguished. The technique is based on metrics 

comparison between the analytical and implementation 

planes - total number of distinct states, depth of state space 

search. 

The following results have been obtained: 

a) The fragment of spacecraft orientation control unit 

functioning flowchart has been considered as a case 

study. Corresponding FS has been synthesized with 

respect to the proposed technique. To implement the 

FS, the TLA+ formalism of TLA temporal logic has 

been applied. The correctness of the FS has been 

checked through TLA Toolbox. To verify the 

resulting FS, the TLC model checker has been 

utilized. With respect to the proposed technique, the 

adequacy of formal model has been successfully 

proved: total number of distinct states found - 5, depth 

of state space search - 3. No deadlocks have been 

faced. 

b) Two alternative implementations of TLC model 

checker have been applied - the BFS- and the DFS-

based one. It has been shown that, with respect to the 

case study conducted, the DFS-based implementation 

is about 2,52 times more efficient (in terms of 

corresponding time costs), comparing to the BFS-

based alternative. It has been demonstrated that spatial 

characteristics of BFS-implementation are 

significantly better: up to 32 times - with respect to a 

case study conducted. 

Further research is aimed at developing the 

mechanisms automating the implementation of the 

proposed technique. 
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