
 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1707

A TECHNIQUE FOR CHECKING THE ADEQUACY OF FORMAL MODEL

Vadym Shkarupylo1,2, Jamil Abedalrahim Jamil Alsayaydeh3,4, Igor Tomičić5, Alexander Chemeris6 and

Valentyna Dusheba1
1Department of Mathematical and Computer Modelling, G. E. Pukhov Institute for Modelling in Energy Engineering, NAS of Ukraine,

General Naumov Str., Kyiv, Ukraine
2Department of Computer Systems and Networks, National University of Life and Environmental Sciences of Ukraine,

Heroyiv Oborony Str., Kyiv, Ukraine
3Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal,

Melaka, Malaysia
4Center for Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka,

Malaysia
5Faculty of Organization and Informatics, University of Zagreb, Pavlinska Str., Varaždin, Hrvatska

6Department of Modeling and Econometrics, G. E. Pukhov Institute for Modelling in Energy Engineering, NAS of Ukraine, General

Naumov Str., Kyiv, Ukraine

E-Mail: shkarupylo.vadym@ipme.kiev.ua

ABSTRACT

In this paper, the question on the expediency of checking the model, the model checking method is applied to, is

discussed. To this end, corresponding technique has been proposed. Named technique is based on differentiation between

the concepts of analytical plane of model perception and the concepts of corresponding implementation plane. The

technique is grounded on the following constituents: Kripke structure - for analytical interpretation of formal specification;

Temporal Logic of Actions and corresponding formalism - as the instruments for shifting from the analytical plane to the

implementation one; TLC model checker - to examine the correctness of formal specification – with respect to the concepts

of implementation plane. To prove the proposed technique, the case study has been conducted. To this end, the algorithms

from the spacecraft domain have been considered. To verify the resulting specifications, two alternative implementations

of TLC model checker have been applied.

Keywords: adequacy, correctness, formal specification, model checking, TLA, TLC.

1. INTRODUCTION

1.1 Distinctive Features of Model Checking Technique

Nowadays, model checking techniques and

corresponding implementations - model checkers (MCs) -

are broadly adopted during the developing of diverse

safety-critical systems, e.g., real-time operating systems

(RTOS) [1], modern processors design solutions (DSs) [2],

control systems in Finnish nuclear industry [3], virtual

cloud resources [4], etc. The distinctive features of these

techniques can be formulated as follows:

a) Decision on system property specification correctness

is carried out on the basis of corresponding model,

generated through model checking of formal

specification (FS).

b) In contrast to the alternatives, e.g., deductive

verification, equivalence checking, the process of

MCs utilization can be thoroughly automated. This

aspect is of topical importance, because of the

complexity of modern software system’s DSs, e.g.,

the Amazon Web Services (AWS) [5].

Both aforementioned features of MCs

demonstrate the drawback and the advantage, respectively.

1.2 Peculiarities of Work Conducted

This paper addresses the first aforementioned

feature, i.e., the necessity to deal with the model, rather

than a system itself. Here comes the following peculiarity:

when considering the model checking technique and its

application in certain domains, the problem domain needs

to be specified in an unambiguous manner. To this end,

the following assumptions have been made:

a) An engineering process is approached as a sequence

of the steps - requirements analysis, designing,

implementation, validation.

b) MC technique is supposed to be applied during the

designing stage of engineering process.

c) Developer’s perception of system under design is

addressed with iteratively created and refined

artifacts. To this end, Manfred Broy’s artifact-based

approach to engineering process formalization has

been adopted. With respect to this approach, an

“artifact” is considered as a document with structure

and content, i.e., an outcome of certain step [6].

The proposed technique is intended to be applied

during the designing stage of engineering process. To this

end, with respect to the aforementioned features of MCs,

the DSs of a system under development, e.g., the

mailto:shkarupylo.vadym@ipme.kiev.ua

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1708

diagrams, are treated as the input data, the FSs to be

synthesized from. After that, the MC technique is

implicitly applied to the FS: through corresponding FSM

(Finite-state Machine), i.e. transition system. Here comes

the conceptual breach prompting answering the following

question: does the developer’s analytical perception of the

DS correspond to the FSM generated through the

automated model checking of the FS, and, as an outcome,

can we trust the results of such verification? Here the

differentiation between the concepts of analytical and

implementation planes arises. Moreover, when addressing

the implementation plane, the following positions need to

be worked out: choosing the appropriate temporal logic;

applying the “right” formalism, making it possible to

conduct the verification in an automated manner; adopting

proved MC technique.

To answer the question, the operative adequacy

checking technique is required to be implemented. To this

end, the following assumptions have been made:

a) When applying the MC technique, the FS is

approached as a prototype, the FSM is synthesized

with respect to.

b) “Adequacy” concept is stressed with respect to the FS

and corresponding FSM.

Grounding on the importance of such technique

elaboration is provided below.

The rest of the paper is organized as follows. In

section 2, the analysis of the related work is conducted. In

section 3, the description of the proposed technique is

presented. In section 4, the results of experimental studies

are discussed. In section 5, the conclusions and the

thoughts on further research are given.

2. LITERATURE REVIEW

2.1 Grounding on the Instruments Applied

Addressing the assumptions provided in the

previous paragraph, the following steps have been made:

a) Temporal Logic of Actions (TLA) [7], by Leslie

Lamport, has been chosen as the basis because of the

following factors: massive industrial use [1-4],

applicability to concurrency checking [8], proved

instrument to be applied in safety-critical domain,

e.g., the railway control applications [9]. Moreover,

TLA has been successfully used in novel Software-

defined Networking (SDN) domain – to verify the

rules of SDN-compatible switch [10].

b) To represent the FS in a form applicable to automated

MC, the mathematically strict TLA+ formalism has

been adopted [11].

c) To conduct the verification by way of MC, the TLC

checker has been applied [7].

d) To group the TLA, TLA+ and TLC, the TLA Toolbox

has been utilized [12].

Among the preconditions to these steps is the

possibility to represent the FS with a single temporal

formula, which is critical in terms of scalability,

modularity and easiness of shifting the grain of atomicity

of the FS.

2.2 Adequacy Checking Techniques Analysis

Taking into consideration the peculiarities of

problem domain approached, the obvious way to do the

adequacy checking is a topological one, when the

transition system, i.e., the model, is treated as a graph, and

typical approach includes resolving the problem of graph

isomorphism. Though, due to the NP-completeness of this

task [13] and significant size of state space, it seems to be

infeasible in practice.

Depending on the artifact type, the FS is

synthesized from (e.g., DS, implementation), the

approaches to FS synthesis and corresponding adequacy

checking vary significantly. For instance, FS adequacy has

been considered with respect to the quality of tests

obtained through the automated FS-based structural test

case generation [14]. The DS has been considered here as

an input data for FS synthesis. It has been found out that

sticking to existing FSM-based coverage criteria, e.g.,

state, transition, decision coverage, provide even worse

results, comparing to randomly generated tests. The

semantics of FS language (RSML, Requirements State

Machine Language) applied and the peculiarities of

problem domain (flight-guidance system) have been

proclaimed to be the reason to that. NuSMV symbolic

model checker has been applied as an instrument.

FS adequacy delivering is tightly bound with an

effect of FSM state space explosion. A technique to

mitigate it, i.e., BDDs (Binary Decision Diagrams), is

implemented in NuSMV method. As a case study, named

method has been applied to foster the single-failure

tolerance of nuclear reactor protection system [15]. FS

adequacy has been approached here in terms of its

completeness: FS encompasses not only the application

logics, but also a hardware plane (hardware component

failures, communication delays).

In contrast to the aforesaid, when the DS has

been approached as an input data for the FS synthesis, the

adequacy metrics can be applied with respect to the

structure of software system implementation, e.g.,

Modified Condition and Decision Coverage (MC/DC)

criterion [16]. It has been stated that manipulation with

implementation structure to foster the MC/DC criterion

has no positive effect on the adequacy of obtained tests.

On the contrary, the significant effect has been obtained

through increasing the coverage completeness, on pair

with costs increase though. Such implementation coverage

can be delivered through the in-code assertions, e.g., VCC

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1709

(Verifying Concurrent C) applied to verify the Microsoft

Hyper-V hypervisor [17]. To check the FSM, an SMT

(first-order Satisfiability Modulo Theories) solver has

been utilized. Semantic aspect has been addressed here

with a “typestate” notion. Though a completeness criterion

can be satisfied by exhaustive coverage with assertions, a

substantial drawback here is that the number of such

assertions can significantly outpass the size of code

verified. This aspect both complicates code analysis and

increases related time costs.

By elaborating the direction, where the DS is

considered as an input data, in given paper, the adequacy

aspect is approached in terms of providing the transparent

mechanism for “shifting” between the DS and

corresponding FS, thus, diminishing the semantic

discrepancy between the FS language and problem

domain.

3. MATERIALS AND METHODS

3.1 Analytical Plane Concepts Formalization

3.1.1 Model checking task formulation

Let the model checking task is formulated as

follows:

=|,bM , (1)

where M - Kripke structure, defined over an AP set of

atomic prepositions; b - system behavior as a sequence of

states - an analytical representation of system property; 

- temporal formula to be satisfied in each element of b

sequence, i.e., FS of b . The FS is implemented as a

temporal formula to make it possible to check b in an

automated manner with MC applied. To this end, the TLA

temporal logic, corresponding TLA+ formalism and TLC

model checker have been brought to the use.

The core idea inside the proposed technique is

conceptually similar to the one that takes place during the

test-driven development process (TDD): the tests are

created first, and then the software module satisfying these

tests is made [18]. Similarly, with respect to (1), M

structure is approached conceptually as the tests, and 

temporal formula, implemented on the basis of chosen

formalism - as the software module satisfying these tests.

3.1.2 Kripke structure as the mathematical model

Let M structure (model) over the AP set is

defined as follows [19]:

LRSSM ,,, 0= , (2)

where S – total set of states: SS 0 – set of initial

states;
2SR – set of transitions between states;

APSL 2: → – states labeling function.

It should be noted that (2) structure differs from

typical automaton by lacking the transitions labeling. This

peculiarity simplifies model checking process, making it

possible to represent the behavior of reactive system with

potentially infinite set of states on the basis of a finite one.

Let b is an infinite sequence of states, formed

through () Rss , transitions, where Ss - current state,

() SsRs = – subsequent state:

...,,...,, 10 ll ssssb = , (3)

where ()01 sRs = , () ()()012 sRRsRs == ,…,

() ()() ()021 sRsRRsRs l
lll === −− , where l upper index

is the number of times the R has been applied, e.g. the

power of composition on the basis of R . To sum up,

()1,...,1,0 −= lfSs f the following property takes

place: () 1+= ff ssR . Starting from Ssl  , there is

different relation – () ll ssR = , ()() ll ssRR = ,…, required

to satisfy the totality property of S .

To form the basis for FS synthesis, the concept of

“trajectory” is applied: () () () ()lsLsLsLbL ,...,, 10= , where

lsssb ,...,, 10= , comparing to b , is a finite sequence.

Corresponding elements are the elements of AP set:

()
f

fsLAP = , lf ,...,1,0= , (4)

where DVAP = ,   Nn

jjvV


=
=

1
 – state variables set;

  Nz
kkdD

== 1 – set of state variable values.

In case of Nm trajectories specified, (4) can

be generalized as follows:


m

i

iAPAP

1=

= , (5)

where Bm = :  ibB = ; iAP – i -th set of atomic

prepositions to specify Bbi  trajectory.

3.1.3 Events formalization

By applying the principle of dichotomy,

Sss  , : ()sRs = , () APsLap  and

() APsLpa  elements are approached as pre- and

post-conditions to the events prompting the () Rss ,

transition between the adjacent states Sss , :

() () () () dvdvsLsL jj = ,,, , respectively, where

ddDdd  ,, , () () APsLapdv j =, – precondition

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1710

to j -th event, () () APsLpadv j =, – post-

condition.

An event is analytically represented as

implication, modified with X (neXt) temporal operator

[20]:

() ()()
() ()()1,,

,,

+

→

kjkj

jjj

dvXdv

dvXdve
, (6)

where  operator represents the tautology.

Expression (6) means that at certain current

simulation step, associated with Ss state,

() () () APsLsLdv j  \, atomic preposition takes place –

equals “true”: () 1, dv j . As an outcome of je event,

() () () APsLsLdv j  \, atomic preposition becomes

“true” – () 1, dv j – in the subsequent state () SsRs = ,

addressed with X operator.

If consider je as a function, then

() () ()  ()jj edomdvssL == ,\ ,

() () ()  ()jj erandvssL == ,\ . Thus, it can be approached

as a relation:

() () () ()ssLssLe j \\: → , (7)

i.e. () ()dvdve jjj ,,:  .

Semantic property of X temporal operator is

depicted below:

()() ()()dvsMdvXsM jj == ,|,,|, , (8)

where ()()dvXsM j = ,|, expression means that, with

respect to current Ss state of transition system,

formalized with M (2), ()dvX j , temporal formula is

true;  operator depicts the tautology; ()()dvsM j = ,|,

expression means that, with respect to a subsequent state

() SsRs = , ()dv j , atomic preposition is true.

3.1.4 Model checking task generalization

To encompass both positive and negative

outcomes of MC - in terms of errors presence/absence in

the FS, expression (1) has been extended as a disjunction:

() ()() 1|,|, =  bMbM , (9)

which is a tautology. In case of () 1|, =bM , no errors,

e.g., unreachable states, deadlocks, have been faced during

the MC. Otherwise, () 1|, bM equality takes place.

In terms of the expediency of MC technique

application, both disjoints in (9) represent successful

scenarios. To make this statement relevant, both of the

following questions need to be positively answered first:

a) Is implementation of  temporal formula - FS -

correct?

b) Is the model generated through the MC adequate?

An approach to answering these questions is

provided below.

3.1.5 Setting the relations between the concepts of

 both planes

To foster answering the first question, the

transparent and unambiguous “bridge” between the

analytical representation of  and its implementation on

the basis of specified formalism need to be constructed

(Figure-1). Named formalism is devoted to be an

instrument making it possible to check the correctness of

the FS in an automated manner.

Figure-1. Differentiation between the analytical and

implementation planes.

In Figure-1, the external dashed squares represent

the conceptual planes discussed.

The correctness of the FS is approached in a

bipartite manner - syntactic correctness and the structural

one:

a) Syntactic correctness is addressed with syntactic

analyzer.

b) Structural correctness should be delivered through the

approach described.

To check the adequacy, the concept of “MSA”

(Model Structural Adequacy) has been applied [21].

Peculiarities of the approach proposed are depicted in

Figure-2.

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1711

Figure-2. Relations between the DS, FS, M and

M  artifacts.

With respect to Figure-2, developer’s perception

of the FS is addressed with M structure (2). At the same

time, the FS, synthesized from the DS, is supposed to be

the grounding, the 'M transition system is generated from

in an automated manner. In accordance with this, proposed

approach is aimed at checking the adequacy of 'M artifact

in a topological manner: M and 'M artifacts are treated

as the graphs to be compared to each other with respect to

the metrics chosen. Moreover, positive decision on the

adequacy of resulting 'M structure is also supposed to be

the implicit demonstration of FS correctness.

3.1.6 Algorithm inside the proposed technique

To solve the MC task (9), corresponding

algorithm has been proposed (Figure-3).

Figure-3. Conceptual view of the approach to model

checking task resolving.

With respect to Figure-3, correctness of the FS is

supposed to be checked first (block 1) in accordance with

bipartite manner described above (Figure-1). As a result of

positive outcome, the MC technique is supposed to be

applied (block 3), otherwise - the FS needs to be refined

(block 2). Peculiarity of the approach applied: M 

adequacy checking is performed after the MC (block 4).

Otherwise, M  still would not be generated. In case of

M  inadequacy (block 6), it has to be refined. Otherwise,

the truth of ()=|,bM statement is checked (block 5). In

case of () 1|, bM , DS refinement and subsequent

synthesis of corresponding FS need to be performed

(block 7).

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1712

3.2 Implementation Plane Formalization

3.2.1 Events implementation

Actions are the elementary constructs of TLA+

specification [7]. To specify the actions, the events – (6)

and (7) - need to be implemented first. Then these

implementations are approached as action constituents. To

do so, the following steps have been made.

Step 1. Initial state specification. Correspondence

between the notions of “state label” - ()sL , Ss

(2) - and state specification -  - taking place in

the implementation plane has been established:

()  1,0: →sL , (10)

where   ()ran=1,0 – Boolean domain: 0 - “false”, 1 -

“true”.

To start model checking, the initial state

specification is approached as a conjunction over the

elements of ()0sL , SSs  00 (2):

()() () () ()0,...0,0, 210 nvvvsL = , (11)

where () () APsLv j  00, [22].

Step 2. Event specification. To implement the analytical

concept of event (6) on the basis of TLA+

formalism, an “if-then-else” construct has been

utilized [23]:

()()() ()
()dvelse

dvthensLife

j

jj

=

=

:

:0
, (12)

where je - TLA+ implementation of je (6); ()()0sL -

precondition for the event to take place; Vv j  - copy of

Vv j  applied with respect to the subsequent state (8) -

as an outcome of X temporal operator utilization. As

dvs j : , then, in case of 1 , dvs j  : , where

()sRs = . Depending on D value, ()dv j = : operation

can be performed up to 1−z times, i.e., je event can take

place up to 1−z times (4). On contrary, in case of 0 ,

()dv j = : expression means that Vv j  does not change

its value during () Rss , transition. Here comes the

necessity to formalize an “empty event” concept, similar

to (6):

() ()()
() ()()dvXdv

dvXdve

jj

jjj

,,

,,0



→
, (13)

where; je0
 - analytical interpretation of j -th empty

event. Comparing to (6), Vv j  does not change its value

with X operator application: dvs j  : .

Concept of an empty event (13) is based on

Hoare’s empty statement rule [24]:

()  () dvskipdv jj ,, , (14)

where skip statement does not change the state of (2)

automaton.

Thus, depending on  value, either event (6) or

empty event (13) takes place. Here comes generalization

property of event implementation (12) (Figure-4).

Figure-4. Relations between the concepts of (6), (12)

and (13).

In Figure-4, generalization property of (12) is

depicted with “aggregation” relation.

Similar to (12), preconditions to the subsequent

events are obtained in a like manner.

3.2.2 Actions specification

Actions are the distinctive concepts of TLA. To

specify an action, Vv j  , ()jvs  value needs to be

assigned. Thus, total number of events / empty events to

be specified to construct an action equals nV = .

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1713

To implement empty event (13) on its own, the

“unchanged” operator (u) of TLA+ formalism has been

applied:

()() ()()jjjj vsvvsvu ,,:  , (15)

To shift from the concept of “event” to TLA-

concept of “action” - function specifying the transition

between the adjacent states [7], events / empty events are

formalized per each Vv j  . To group these specifications

together, conjunction operator has been applied:

()() ()()

()()
()()

()() ,,...

...,

,...

...,,

11

11

2211

nn

jjj

jj

j

vsvu

vsvue

vsvu

vsvuvsvua









++

−−
 (16)

where ja - j -th action built upon single je event and

1−n empty events.

With respect to (16), depending on the number of

non-empty events, proportions between (12) and (15)

constituents can vary.

Architecture, demonstrating relations between the

concepts of analytical and implementation planes,

including actions, is depicted in Figure-5.

Figure-5. Concepts stratification.

In Figure-5, jhnjjh +−= ;,...,1,1,...,2,1 .

Diagram is intended to be applied as a template to shift

between the concepts of analytical and implementation

planes, delimited with dotted squares. Moreover, two

hierarchical layers (stratas) have been distinguished.

Upper strata - 2 - encompasses solely a pair of elements:

() Rss , - from analytical plane (2), (16) - from

implementation plane. Stratification has been applied to

emphasize the conceptual breach between the “events” and

the “actions”. Events here are “gluing” constituents -

elementary building blocks to construct the resulting

temporal formula  (1) to be checked on the basis of (2).

So far, the specified concept of “action” (16) does

not provide the way to reason on system behavior b (1).

To do so, further stratification needs to be conducted to

encompass also the behavior [25].

3.2.3 Behavior specification

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1714

Behavior specification is constructed with respect

to a template provided in [7]. To this end, G (Globally)

temporal operator has also been used:

()()

































−
−

1
1

2
2

10

0

...

......

...

l
l

f
f

aX

aX

aX

aXa

GsL , (17)

where l actions prompt corresponding transitions between

1+l states - elements of b  ; upper index of
fX

expression means that X temporal operator has been

applied f times, e.g., 22
2 aXXaX  , etc. Upper dash of

fa means that corresponding action has been re-

enumerated with respect to the sequence, set with X

operators. Thus, in (17), implementation of behavior is

encapsulated:

1
1

2
2

10

......

...

−
− 



l
l

f
f aXaX

aXaXab
, (18)

where b  - TLA+ implementation of b  (Figure-6).

Figure-6. Resulting stratification of the FS.

In Figure-6, three hierarchical layers have been

distinguished, where upper strata covers the concepts of 'b

and corresponding implementation b  (18).

To generalize (17) for the case of multiple behaviors, with

respect to (5),  can be rewritten as follows:

()()  mbbbGsL  ...210 ,

 (19)

where  operator defines the alternativeness of behaviors.

The diagram, depicted in Figure 6, and expression (19)

provide the mechanism to obtain the resulting temporal

formula  (1) on the basis of Kripke structure (2).

3.3 Adequacy Checking

To prove the proposed technique, M and M 
structures have been stepped up from the topological

viewpoint: corresponding transition systems have been

considered as graphs to be compared:

a) Let RSG ,= is a structural constituent of M

artifact (Figure-2), where S - set of vertices, R - set

of edges between the elements of S ; G represents

developer’s analytical perception of the DS.

b) 2. Let RSG = , is a structural constituent of M 

artifact (Figure 2), where S  – set of vertices, R -

set of edges between the elements of S  ; G  is

synthesized in an automated manner through the

model checking with respect to Figure-3. Its metrics

are obtained from the listing of model checking

results.

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1715

c) 3. Statement on FS adequacy is made on the basis of

the following conditions: SS = - numbers of

distinct states found are equal; () ()GdepthGdepth = -

depths of space search are equal. In case of both these

conditions are satisfied, the FS is considered as an

adequate one.

Applicability of the proposed technique has been proven

through the case study provided below.

4. RESULTS AND DISCUSSIONS

4.1 Technique Peculiarities Demonstration

To demonstrate the peculiarities of the proposed

technique, a case study has been conducted: fragment of a

flowchart of spacecraft orientation control unit has been

considered (Figure-7):

a) Control equipment (CE) status flag predefines the

forthcoming scenario (Block 1).

b) In case of 0, power delivery system (PDS) needs to be

started (Block 3).

c) Otherwise, configuration control unit (CCU) should

be started first (Block 2).

Figure-7. Fragment of the flowchart.

In accordance with Figure 7, the following

scenarios can be contemplated (depicted as the sequences

of block numbers): 1, 3; 1, (2, 1), 3.

To create corresponding FS, the V , D and the

resulting AP sets need to be synthesized first (4):

 321 ,, vvvV = , where ()3,2,1= jVv j represents j-th

block;  1,0=D , where Dd is either “true” or “false”;

()  () 1,0, jj vvAP = : () APv j 0, – fragment of code,

represented with j-th block, yet to be executed, () APv j 1,

- has already been executed.

With respect to Figure-7, depending on the value

of CE flag, the set of initial states is as follows:

  SssS = 100 , : () () () () 0,,0,,0, 3210 vvvsL = ,

() () () () 0,,0,,1, 3211 vvvsL = . Corresponding state diagram

covering all the elements of S is provided in Figure-8.

Figure-8. State diagram for the flowchart fragment.

In Figure-8, graph G is depicted: 5=S ; depth

of state space search - 3 - number of states the “longest”

behavior is built of.

In Figure-8, there are two alternative behaviors –

21,bb : 201 , ssb = ; 4312 ,, sssb = , representing the

scenarios of system functioning. Dashed “Init”-square

encompasses the elements of 2: 00 = SSS , with L

function applied. Transitions between the states are

marked with Hoare triples:

() () () () () 1,,0,:, 332020 vvssLRss = - with

()  () 1,0, 333 vev triple, where 3e – the event prompting

the transition: () APv 0,3 - precondition for 3e event,

() APv 1,3 - post-condition; the same triple takes place

for () () () () () 1,,0,:, 334343 vvssLRss = transition.

With respect to () () () () () 1,,0,:, 223131 vvssLRss =

transition, ()  () 1,0, 222 vev triple is applied. Thus, there

are two events - 2e and 3e , prompting the transitions

between the states.

Thus, specification of 1b is as follows:

()()  301 aGsL  . With respect to (12) and (16),

() ()() () ()()3333313 :1:00 vvelsevvthenvvifa =−=====

()() ()()2211 ,, vsvuvsvu  .

Specification of 2b is as follows:

()()  3212 XaaGsL  . Basing on (12) and (16),

() ()() () ()()2222212 :1:01 vvelsevvthenvvifa =−=====

()() ()()3311 ,, vsvuvsvu  .

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1716

The resulting TLA+ FS, encompassing both

behaviors (1b and 2b), is a disjunction:

()() ()()() () 3231021 XaaaGsLsL   .

Thus, with respect to (1), the model checking task can be

formulated as follows: 2121 |,,  =bbM .

Complete specification is provided in an

Appendix A, where “Spec” is the TLA+ representation

resulting temporal formula  . As an outcome of TLC

model checker application to the FS, the metrics of G 

graph are provided in corresponding listing: no deadlocks

have been reached, total number of distinct states found -

5, the depth of state space search - 3.

With respect to the results obtained, by

comparing the metrics of G and G  graphs, the resulting

M  model can be characterized as an adequate one. The

correctness of the FS has been checked in an automated

manner by applying the built-in instruments of TLA

Toolbox. To estimate corresponding time costs, two

alternative implementation of TLC model checker have

been considered: the one, relying on the Breadth-first

Search (BFS) technique, and the implementation based on

the Depth-first Search (DFS) technique.

An experiment has been conducted on the

following platform: TLC checker version - 2.14; Java

Runtime Environment (JRE) version - 64 bit, build

1.8.0_251-b08; 8 threads, 3.8 GHz; random access

memory capacity: 16 GB.

Obtained results: 895.0=BFSt sec,

355.0=DFSt sec, where BFSt - average value of BFS-

related time costs, DFSt - DFS-related one. Each value is

an average of ten measures.

Thus, it can be concluded that, with respect to a

scenario considered, the DFS-based implementation of

TLC checker is about 2.52 times more efficient,

comparing to the BFS-alternative, in terms of

corresponding time costs.

4.2 Sophisticating the Case Study

To generalize the outcome of proposed technique

implementation, more complex scenario has been

considered: software component of the on-board digital

computer complex (DCC) of a spacecraft has been

approached. Corresponding algorithm is devoted to control

an initial state of the registers of the on-board computer of

the input/output unit of DCC:

a) Algorithm block-diagram has been considered as an

input data.

b) Total number of state variables - 18.

c) Total number of blocks – 77 (Figure 9).

In Figure-9, dashed square Z depicts the construct

repeating 15 times, but with different variables. Thus, the

resulting number of blocks is as follows: 772155 =+ .

Table-1. Spatial characteristics of synthesized and verified specifications.

No. n S

BFSS 

DFSS 
BFSS

S


DFSS

S





BFS

DFS

S

S

depth ,

vertices

1 4 82 130 700 0,631 0,117 5,385 10

2 6 342 534 4519 0,640 0,076 8,463 15

3 7 702 1086 11189 0,646 0,063 10,303 18

4 7 712 1096 11927 0,650 0,060 10,882 19

5 8 1432 2200 28156 0,651 0,051 12,798 22

6 10 5742 8814 141343 0,651 0,041 16,036 27

7 11 11502 17646 317237 0,652 0,036 17,978 30

8 11 11512 17656 328775 0,652 0,035 18,621 31

9 12 23032 35320 726652 0,652 0,032 20,573 34

10 14 92142 141294 3367327 0,652 0,027 23,832 39

11 15 184302 282606 7287605 0,652 0,025 25,787 42

12 15 184312 282616 7471943 0,652 0,025 26,438 43

13 16 368632 565240 16049788 0,652 0,023 28,395 46

14 17 737272 1130488 34311398 0,652 0,021 30,351 49

15 18 1474552 2260984 73046458 0,652 0,020 32,307 52

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1717

Figure-9. Fragment of algorithm block-diagram.

In Table-1, No - the number of dashed blocks

(Figure 9), n - number of state variables, S - total

number of distinct states found during the model checking,


BFSS - number of sates generated through BFS-search,


DFSS - through DFS-search. It can be seen that spatial

characteristics of BFS-implementation of the TLC method

are significantly better, comparing to the DFS-alternative:

up to 32 times.

No deadlocks have been reached during the

verification. With respect to a proposed technique, the

metrics of G and G  graphs have been found to be equal.

5. CONCLUSIONS

Within this paper, we have proposed the

technique for checking the adequacy of model, the model

checking method is devoted to be applied to.

With respect to the proposed technique, the

concepts of analytical and implementation planes have

been distinguished. The technique is based on metrics

comparison between the analytical and implementation

planes - total number of distinct states, depth of state space

search.

The following results have been obtained:

a) The fragment of spacecraft orientation control unit

functioning flowchart has been considered as a case

study. Corresponding FS has been synthesized with

respect to the proposed technique. To implement the

FS, the TLA+ formalism of TLA temporal logic has

been applied. The correctness of the FS has been

checked through TLA Toolbox. To verify the

resulting FS, the TLC model checker has been

utilized. With respect to the proposed technique, the

adequacy of formal model has been successfully

proved: total number of distinct states found - 5, depth

of state space search - 3. No deadlocks have been

faced.

b) Two alternative implementations of TLC model

checker have been applied - the BFS- and the DFS-

based one. It has been shown that, with respect to the

case study conducted, the DFS-based implementation

is about 2,52 times more efficient (in terms of

corresponding time costs), comparing to the BFS-

based alternative. It has been demonstrated that spatial

characteristics of BFS-implementation are

significantly better: up to 32 times - with respect to a

case study conducted.

Further research is aimed at developing the

mechanisms automating the implementation of the

proposed technique.

ACKNOWLEDGMENT

Paper has been prepared with respect to the tasks

of the research works carried out by the Department of

Mathematical and Computer Modeling of G.E. Pukhov

Institute for Modelling in Energy Engineering (PIMEE),

NAS of Ukraine: 0121U110615 “Development of methods

and means for safety-critical systems designing process

artifacts verification”; 0120U102683 “Development of

specialized computer technologies for modeling and

processing of operational information in energy

problems”.

The work has also been supported by Metal

Centre Čakovec under the project KK.01.1.1.02.0023.

REFERENCES

[1] Verhulst E., Boute R. T., Faria J. M. S., Sputh B. H.

C. and Mezhuyev V. 2011. Formal development of a

network-centric RTOS: software engineering for

reliable embedded systems. Springer Publishing

Company, Inc.

[2] Beers R. 2008. Pre-RTL formal verification: an Intel

experience. In 45th annual Conference on Design

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1718

Automation (DAC '08), Anaheim, California. pp. 806-

811. DOI: https://doi.org/10.1145/1391469.1391675

[3] Pakonen A., Tahvonen T., Hartikainen M. and

Pihlanko M. 2017. Practical applications of model

checking in the Finnish nuclear industry. In 10th

International Topical Meeting on Nuclear Plant

Instrumentation, Control and Human Machine

Interface Technologies, San Francisco, CA, USA.

pp. 1342-1352.

[4] Alimseitova Zh., Adranova A., Akhmetov B., Lakhno

V., Zhilkishbayeva G. and Smirnov O. A. 2020.

Models and algorithms for ensuring functional

stability and cybersecurity of virtual cloud resources.

Journal of Theoretical and Applied Information

Technology. 98(21): 3334-3346.

[5] Newcombe C., Rath T., Zhang F., Munteanu B.,

Brooker M. and Deardeuff M. 2015. How Amazon

web services uses formal methods. Communications

of the ACM. 58(4): 66-73. DOI:

https://doi.org/10.1145/2699417

[6] Broy M. A 2013. A logical approach to systems

engineering artifacts and traceability: from

requirements to functional and architectural views. In

Engineering dependable software systems: NATO

Science for Peace and Security Series - D:

Information and Communication Security, M. Broy,

D. Peled, G. Kalus, Ed., Amsterdam: IOS Press. 34:

1-48. DOI: https://doi.org/10.3233/978-1-61499-207-

3-1.

[7] Lamport L. 2002. Specifying systems: the TLA+

language and tools for hardware and software

engineers. Boston: Addison-Wesley.

[8] Lamport L. 2006. Checking a multithreaded algorithm

with +CAL. In 20th international conference on

distributed computing (DISC'06), Stockholm,

Sweden, September 18-20. pp. 151-163.

[9] Resch S. and Paulitsch M. 2017. Using TLA+ in the

development of a safety-critical fault-tolerant

middleware. In 2017 IEEE International Symposium

on Software Reliability Engineering Workshops

(ISSREW'2017), Toulouse, France. DOI:

https://doi.org/10.1109/ISSREW.2017.43

[10] Kim Y.-M. and Kang M. 2020. Formal verification of

SDN-based firewalls by using TLA+. IEEE Access. 8:

52100-52112.

[11] Konnov I., Kukovec J. and Tran T.-H. 2019. TLA+

model checking made symbolic. Proceedings of the

ACM on Programming Languages. 3(OOPSLA): 1-

30.

[12] Kuppe M. A., Lamport L. and Ricketts D. 2019. The

TLA+ Toolbox. In 5th Workshop on Formal

Integrated Development Environment (F-IDE 2019),

Porto, Portugal. pp. 50-62.

[13] Babai L. 2016. Graph isomorphism in

quasipolynomial time. In Forty-eighth annual ACM

symposium on Theory of Computing (STOC '16),

Cambridge, MA, USA. pp. 684-697.

[14] Heimdahl M. P. E., George D. and Weber R. 2004.

Specification test coverage adequacy criteria =

specification test generation inadequacy criteria. In

Eighth IEEE International Symposium on High

Assurance Systems Engineering. pp. 178-186, DOI:

https://doi.org/10.1109/HASE.2004.1281742

[15] Pakonen A. and Buzhinsky I. 2019. Verification of

fault tolerant safety I&C systems using model

checking. In 2019 IEEE International Conference on

Industrial Technology, ICIT 2019, Melbourne,

Australia. pp. 969-974. DOI:

https://doi.org/10.1109/ICIT.2019.8755014

[16] Gay G., Rajan A., Staats M., Whalen M. and

Heimdahl M. P. E. 2016. The effect of program and

model structure on the effectiveness of MC/DC test

adequacy coverage. ACM Transactions on Software

Engineering and Methodology. 25(3). DOI:

https://doi.org/10.1145/2934672

[17] Cohen E., Dahlweid M., Hillebrand M., Leinenbach

D., Moskal M., Santen T. and Schulte W. 2009. VCC:

A Practical System for Verifying Concurrent C. In

Berghofer S., Nipkow T., Urban C., Wenzel M. (eds)

Theorem Proving in Higher Order Logics. TPHOLs

2009. Lecture Notes in Computer Science, vol. 5674.

Springer, Berlin, Heidelberg. pp. 23-42. DOI:

https://doi.org/10.1007/978-3-642-03359-9_2

[18] Fucci D., Erdogmus H., Turhan B., Oivo M. and

Juristo N. 2017. A Dissection of the Test-Driven

Development Process: Does It Really Matter to Test-

First or to Test-Last? IEEE Transactions on Software

Engineering. 43(7): 597-614. DOI:

https://doi.org/10.1109/TSE.2016.2616877

 VOL. 16, NO. 16, AUGUST 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1719

[19] Clarke E. M., Grumberg O., Kroening D., Peled D.

and Veith H. 2018. Model checking, 2nd ed.

Massachusetts: The MIT Press.

[20] Shkarupylo V. and Polska O. 2018. The approach to

SDN network topology verification on a basis of

Temporal Logic of Actions. In 14th Int. Conf. on

Advanced Trends in Radioelectronics,

Telecommunications and Computer Engineering

(TCSET'2018). pp. 183-186.

[21] Gupta H. V., Clark M. P., Vrugt J. A., Abramowitz G.

and Ye M. 2012. Towards a comprehensive

assessment of model structural adequacy. Water

Resources Research. 48(8): 1-16. DOI:

https://doi.org/10.1029/2011WR011044

[22] Shkarupylo V. V., Tomičić I. and Kasian K. M. 2016.

The investigation of TLC model checker properties.

Journal of Information and Organizational Sciences.

40(1): 145-152.

[23] Shkarupylo V., Kudermetov R., Golub T., Polska O.

and Tiahunova M. 2018. Towards Model Checking of

the Internet of Things Solutions Interoperability. In

2018 IEEE International Scientific and Practical

Conference on Problems of Infocommunications.

Science and Technology (PIC S&T-2018), Kharkiv,

Ukraine. pp. 465-468.

[24] Hoare C. A. R. 1969. An axiomatic basis for

computer programming. Communications of the

ACM. 12(10): 576-583.

[25] Alsayaydeh J. A. J., Shkarupylo V., Hamid M. S. B.,

Skrupsky S. and Oliinyk A. 2018. Stratified model of

the Internet of Things infrastructure. Journal of

Engineering and Applied Sciences. 13(20): 8634-

8638.

