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ABSTRACT 

The importance of the average reservoir pressure in all phases of the hydrocarbon industry implies to conduct 
continues research for better calculations of this property. In this paper the pseudosteady-state pressure solution in 
hydraulically fractured wells combined with a better determination of the effective wellbore radius is used to provide 
accurate estimations of the average reservoir pressure. These solutions initially presented for homogeneous formations are 
also extended to naturally fractured reservoirs and expressions for reservoir shape factors and average reservoir pressure 
are introduced for flow, pressure buildup and multi-rate tests for either liquids or gas reservoirs. The expressions are 
successfully tested with synthetic examples and compared to calculations from material balance given absolute deviation 
errors lower than 0.25 %. 
 
Keywords: pseudosteady state, TDS technique, bounded reservoir, anisotropic reservoir, shape factor, pressure derivative, 
superposition, multi-rate tests. 
 
1. INTRODUCTION 

Recent research on the estimation of the average 
reservoir pressure was presented by Chacón et al. (2004), 
who extended the TDS Technique, for vertical wells, 
vertical fractured wells and horizontal wells. The last one 
used the the late time pressure solution of a hydraulically 
fractured well. Another extension of the TDS Technique, 
Tiab (1993), to estimate the average reservoir pressure in 
naturally fractured reservoirs was given by Molina et al. 
(2004). Escobar, Ibagón and Montealegre-M. (2007) 
presented the TDS methodology to estimate the average 
reservoir pressure for vertical wells in either homogeneous 
or heterogeneous formation under multi-rate testing. 
Recently, Escobar, Palomino and Suescun-Diaz (2020) 
presented a TDS methodology, following Agarwal´s 
(2010) idea, to estimate the average pressure for 
drawdown tests conducted in horizontal wells but treating 
the well as it were a fractured well since this and 
horizontal well behave similarly, mathematically speaking, 
ss performed by Chacon et al (2004) and Escobar et al. 
(2011). 

Agarwal (2010) performed a mathematical 
treatment of pressure drawdown and   material balance 
equations to determine the average reservoir pressure from 
flow tests. A similar idea was employed by Mohammed, 
Enty, and Amarfio (2014) to provide and estimation of the 
average reservoir pressure in constant-rate dradown. 
Escobar, Palomino and Jongkittinarukorn (2019) used 
Agarwal´s idea to extend the TDS Technique to obtain 
equations for the estimation of the average reservoir 
pressure and shape factors in vertical wells in 
homogeneous and heterogenous formations and 
hydraulically fractured wells in homogeneous reservoirs. 

In this work the late time pseudosteady-state 
pressure solutions presented by Ozkan (1988) for 

cylindrical and rectangular formations drained by 
horizontal wells were used to find more accurate solutions 
to find the average reservoir pressure in drawdown, 
buildup, multi-rate tests for hydrocarbon reservoirs. 
Excellent match was obtained from the provided solutions 
as compared to results obtained from material balance. 
 
2. MATHEMATICAL DEVELOPMENT - BUILDUP  
    TESTING 
 
2.1 Homogenous Anisotropic Reservoirs 

The dimensionless pressure equation for both a 
horizontal and a vertical well, respectively: 
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The dimensionless time based upon wellbore 

length, and reservoir drainage area are given as: 
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Raghavan (1993) stated that material balance for 

a slightly compressible fluid in bounded reservoirs can be 
expressed as: 
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2.1.1 Cylindrical reservoirs 
The late pseudosteady-state pressure behavior for 

a horizontal well in an anisotropic formation was 
presented by Ozkan (1988). 
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Which can be expressed as: 
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Which pressure derivative is given by: 

 
 (* ' ) 2 DmbDA D ADA Dt P t tP                                   (7) 

 
Division of Equation(6) by Equation (7) will 

provide: 
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Substituting the dimensionless quantities given 

by Equations (1) and (3) into Equation (8), and solving for 
the shape factor, CA, will result: 
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Using the concept given by Equation (4) in 

Equation (8), this becomes: 
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Substituting Equation (1) and its derivative in 

Equation (10) and solving for the average reservoir 
pressure,  
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2.1.2 Rectangular systems 

Ozkan (1988) also introduced pseudosteady-state 
pressure behavior for a horizontal well in an anisotropic 
rectangular formation, 
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which can be rewritten as, 
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Equation (7) is also the derivative of Equation 

(13). Then, dividing Equation (13) by Equation (7), it 
yields, 
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After plugging Equations (1) ad (3) in the above 

expression and, then, solving for the shape factor, 
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Again, applying the concept of Equation (4) in 

Equation (14), 
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Substitution of Equation (1) and its derivative in 

Equation (14) leads to solve for the average reservoir 
pressure,  
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2.2 Other Parameters 

Tiab (1994) found an expression to estimate the 
drainage area from the intersection point of the radial and 
pseudosteady-state flow regimes, trpi, by using: 
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where, 
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The different skin factors and other reservoir 

parameters were found by Engler and Tiab (1996a, 
1996b), as: 
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Martinez, Escobar and Bonilla (2012) presented 

an improved version of the skin factor due to elliptical 
flow, 
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The bounded skin factor, sb, can be estimated by 

Equation (2.7.56) from Ozkan (1988) which involves the use 
of Bessel functions and integrals making the calculation 
somehow unpractical; therefore,sb can be neglected in 
Equations (9) and (11) and use the elliptical flow regime skin 
factor given by Equation (23). 
 
2.3 Naturally Fractured Reservoirs 

Equation (3) can be defined as: 
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The dimensionless storativity ratio introduced by 

Warren and Root (1963) is given by: 
 

 
   




t f

t tf m

c

c c




 
                                             (25) 

 
Multiplying and dividing Equation (24) by (ct)f, 

it results, 
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Measuring the (ct)f, product is not practical. 

Therefore, Tiab, Igbokoyi, and Restrepo (2007) found,  
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With this manipulation, Equation (9) and (15) 

become, respectively, 
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Notice that Equations (11) and (17) are 
unaffected since the new dimensionless time equation is 
absent form Equations (10) and (16). Therefore, Equations 
(11) and (17) can be used to estimate the average reservoir 
pressure once the shape factor is estimated, now, with 
Equations (29) and (30) depending upon a cylindrical or 
rectangular system is dealt with. 
 
2.4 Multi-Rate Testing 

Onur et al. (1988) presented the normalized 
pressure approach concept. Also, Earlougher (1977) 
presented the variable-rate governing equation: 
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The equivalent time concept applied to the TDS 

technique to multi-rate and variable injection tests were 
introduced by Mongi and Tiab (2000) and Hachlaf et al. 
(2002): 
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where; 
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A new redefinition of the dimensionless pressure 

for a horizontal well: 
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and the dimensionless times are now expressed as: 
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A similar procedure as the one performed for the 

constant-rate case is followed here to obtain the average 
pressure equation for a horizontal well producing at a 
continuously changing flow rate is given by: 
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Equations (39) and (40) are given for cylindrical 
reservoirs and Equations (41) and (42) for a rectangular-
shaped reservoir. By the same token, for naturally 
fractured reservoirs for the mentioned systems, the 
estimation of the shape factor is given by: 
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2.5 GAS WELLS 

The dimensionless pseudopressure derivative for 
gas flow is: 
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With these new dimensionless variables, 
Equations (11), (17), (39) and (42) become, respectively, 
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Care must be taken with Equations (9), (15), (29), 

(30), (40), (41), (43) and (44) to change the pressure 
derivative ratio by the pseudopressure derivative ratio. For 
example, for Equation (9), 
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3. MATHEMATICAL DEVELOPMENT -  
    DRAWDOWN TESTING 
 
3.1 Homogeneous Reservoirs 

Escobar, Palomino and Suescun-Diaz (2020) took 
the dimensionless pressure equation for both a horizontal 
and a vertical well, respectively: 
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Following the idea of Agarwal (2010) to solve for 
the dimensionless average reservoir pressure from 
Equation (7), using the arithmetic derivative, leads to: 
 

  ( ) ( ) ( )D DA D DA Dmb DAt tP P P t                                 (54) 

 
Combination of Equation (6) - cylindrical 

system-, (7) and (53) yields:  
 

 2 1

2

1 8.9834
2 ln 2

2
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  

z x m bs s s s

D DA DA
A w

Ae
P t t

C L
 

 

(55) 

 
Dividing Equation (55) by Equation (7) gives, 

 
 2 1

2
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t
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Combination of Equations (53), (57), the 

derivative of Equation (1) and (3) and solving for the 
average reservoir pressure gives: 
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As stated by Agarwal (2010), the well flowing 

pressure, Pwf,  corresponds to the time, tPwf, at which the 
Cartseian derivative becomes flat. Also, (t*P’)Pwf 
corresponds the pressure derivative at tPwf. 

By the same token for the rectangular system, 
Equation (13), it results: 
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P w
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t P c A
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A

C L
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3.2 Naturallyfractured Reservoirs 

For the cylindrical case, combination of 
Equations (52), (56), the derivative of Equation (1) and 
(25) and solving for the average reservoir pressure gives: 
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Following the same manupulations for the 
cylindrical systems, Equation (13), it gives: 
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For gas wells, Equations (59) and (60) will 

become, 
 

 2 1

2

)]301.77[ * ( )
)

8.9834
ln

( '
( ) (

   



 


 


 
  

z x m b

t
wf

P

Pwf f

s s

w

s

f

s

A w

Ae

C

t m P c A
m P m P

kt

L

 


 

(62) 
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The shape factors are found using the expressions 

for pressure buildup tests. 
 

Table-1. Fluid, reservoir and well data for 
simulated examples. 

 

Parameter Example1 Example2 

k , md 220 700 

kz, md 44 70 

, % 20 
 ct, 1/psi 3x10-6 

h, ft 180 100 

Zw, ft 90 50 

rw, ft 0.35 
0.3 

 

q, bbl/D 300 550 

B, rb/STB 1.32 1.2 

, cp 0.8 3 

Pi, psi 2500 2750 

Lw, ft 1500 2000 

hx, ft  10000 

A, Ac 7212.1 4591.4 

(ct)f, 1/psi 

 

1x10-5 

(ct)f+m, 1/psi 1x10-4 

 0.1 

 1x10-6 
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4. SIMULATED EXAMPLES 
 
4.1 Example 1 

A synthetic test was generated for a horizontal well 
in a homogeneous reservoir using information of second 
column in Table-1. The reservoir was assumed to be 
cylindrical with a radius of 10000 ft. Pressure and pressure 
derivative data are reported in Figure-1. 
 

Solution. The below information was read from 
Figure-1. 
 
tEll = 1.01 psi   (P)Ell= 2.098 psi (t*P’)Ell = 10.78 psi 
tpr = 50.61 psi   (P)pr= 3.94 psi (t*P’)pr = 0.554 psi 
tpss= 350 psi   (P)pr= 5.16 psi (t*P’)pr = 0.984 psi 
 

Use of Equation (23) allows to find sELL = 1.09 and 
Equation (21) allows to find sm+sz = 4.71 giving a total skin 
factor of 5.8. Use of Equation (9) leads to find the 
horizontal well shape factor CA = 744280.9. The average 
reservoir pressure was found to be 2490.84 psi while a value 
of 2497.27 is found from a commercial softwatre using 
material balance. Notice that for this case CA = 31.62 which 
corresponds to vertical well in a circular reservoir. 
 
4.2 Example 2 

A simulated horizontal well pressure test was 
generated for a heterogeneous (naturally fractured) reservoir 
using information of third column of Table-1. The shape of 
the reservoir was taken as rectangular with 10000 ft by 
20000 ft. Pressure and pressure derivative data are reported 
in Figure-2. 
 

Solution. The characteristic ponits wree read from 
Figure-2. 
 
tPwf = 825.1 psi   (P)Pwf= 17.81 psi (t*P’)Pwf = 6.54 psi 
 
which can served as a point on the pseudosteady-state 
period. Then, 
 
tpss= 825.1 psi   (P)pss= 17.81 psi (t*P’)pss = 6.54 psi 
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Figure-1. Pressure and pressure derivative versus time 
log-log plot for synthetic example 1. 
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Figure-2. Pressure, pressure derivative and arithmetic 
pressure derivative versus time log-log plot for 

synthetic example 2. 
 

The well-flowing pressure for this example is Pi-
Pwf = 2750 - 17.81 = 2732.2 psi. Equation (15) allows to 
find CA = 106.45 which is used in Equation (59) to provide 
an average reservoir pressure of 2743.13 psi. Also, using a 
commercial software with a CA value of 21.83 which 
corresponds to a vertical well in a  rectangular reservoir, a 
value of average reservoir pressure of 2742.86 psi was 
found by material balance. 
 
5. COMMENTS ON THE RESULTS 

One buildup and one drawdown tests were 
worked to demonstrate the accuracy of the proposed 
equations since the idea is not to demonstrate the 
applicability of the TDS Technique because it has been 
already demonstrated as presented by Escobar, 
Jongkittnarukorn, and Hernandez (2018) and later 
complied by Escobar (2019) into a book. For the given 
case, in the first example an absolute deviation of 0.25 % 
was obtained as compared to material balance from a 
commercial simulator and 0.016 % deviation error was 
found for the second example -a naturally fractured 
reservoir- demonstrating the accuracy of the proposed 
equations. 
 
6. CONCLUSIONS 

New solutions to find the average reservoir 
pressure for pressure drawdown, pressure buildup and 
multirate hydrocarbon reservoirs in either homogeneous 
and naturally fractured reservoirs are provided. The 
equations are tested with synthetical examples finding 
absolute deviation errors less than 0.25 % compared to 
results from material balance provided by commercial 
specialized well testing software. 
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NOMENCLATURE 
 

A Drainage area, ft2 

B Oil volume factor, rb/STB 
CA Dietz’s shape factor 
ct Total compressibility, 1/psi 
hz Formation thickness, ft 
hx Reservoir length along  x-direction, ft 

k  Horizontal permeability (Eq. 19), md  

kx Reservoir permeability in x-direction, md 
ky Reservoir permeability in y-direction, md 
kx Reservoir permeability in verticaldirection, 
Lw Effective horizontal well length, ft 

m(P) Pseudopressure function, psi2/cp 
P Pressure, psi 

P Average reservoir pressure, psi 
PD Dimensionless pressure  
Pi Initial pressure, psi 
Pwf Well-flowing pressure, psi 
q Oil flow rate, BPD 
qg Gas flow rate, MSCF/D 
rw Wellbore radius, ft 
sb Reservoir boundary skin factor, Fb Eq. (5) 
sm Mechanical or infinite skin factor, F Eq. (5) 
sz Vertical skin factor,  in Eq. (5) 

sx 
x-direction skin factor due to partial 
penetration effects in the x-direction 
parallel to the wellbore,  in Eq. (5) 

t Time, hrs 
teq Equivalent time, hrs 

t*P’ Pressure derivative, psi 
t*m(P)’ Pseudopressure derivative, psi2/cp 

teq*Pq’ 
Normalized pressure derivative, 
psi/(STB/D) 

tD 
Dimensionless time referred to welbore 
radius 

tDA 
Dimensionless time referred to reservoir 
area 

trpi 
Intercept of radial and pseudosteady state 
lines, hr 

tDA*PD’ Dimensionless pressure derivative based on 
reservoir area  

tDA*PD’ Dimensionless pressure derivative based on 
well radius  

T Reservoir temperature, R 
xD Dimensionless distance in the x-direction 
xe Reservoir length, md 
XN Superposition time 

 
 
 
 
 
 
 

Subscripts 
 

D Dimensionless quantity 

Ell Elliptical 

er Early radial 

eq Equivalent 

f Formation or fracture 

i Initial conditions, intercept 

ll Late linear 

mb Material balance 

n Rate number 
pss, p Pseudosteady-state 

pr Pseudorradial 

Pwf At well-flowing pressure 

r Radial 
 
Greek 
 

∆ Change, drop 
∆Pq Rate-normalized pressure drop, si/(STB/D) 
 Porosity, fraction 
λ Interporosity flow parameter 
µ Viscosity, cp 
 Dimensionless storativity ratio 

 


