
 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7111

A COMPACT PARALLEL HUFFMAN ENTROPY CODING

TECHNIQUE ON GPGPU USING CUDA

E. Sudarshan1, Ch. Satyanarayana2 and C. Shoba Bindu3

1Jawaharlal Nehru Technological, University, Anantapuram, India
2University College of Engineering, Jawaharlal Nehru Technological University, Kakinada, India

3Jawaharlal Nehru Technological College of Engineering, Anantapuram, India
E-Mail: medasare@gmail.com

ABSTRACT

Various imaging applications have adaptively used the lossless Huffman entropy coding technique since the
redundancy of an image data will be expelled at the precise level. We proposed an accelerated parallel Huffman entropy
coding algorithm which implements on the environment of GPGPU using CUDA architecture. This algorithm proceeds
with a parallel histogram approach for determining the occurrence of every symbol of an input data, from that we generate
a code word for every symbol after the construction of a sequential Huffman tree. Subsequently, the compressed data
obtained as in hexadecimal form after applying the adaptive approach where it reads the data parallel as word wise (8, 16,
32, 64 bits) to the code word. The experimental results showed that the GPGPU runs the parallel code with the speed of
46X than the CPU's serial code.

Keywords: parallel huffman, entropy coding technique, electronic health record, DICOM, CUDA, GPGPU, TRISH, huffman tree.

1. INTRODUCTION

The most significant forthcoming imaging
application is an Electronic Health Record (EHR) [1].
EHR is the patient's health care data a framework which
gives more clear learning about the patient's illness with
the goal that the treatment should be possible in the most
suitable both as far as the way and also the economy. The
patient's EHR data transferred to the clouds to specialists,
academicians, researchers, and others in examining the
patient's disease. Every patient's profile (EHR) should
refresh after every once in a while for the well-being, for
example, a patient's malady, digestion, MRI, CT examine
reports, ECG, Thyroid, etc. Those images are called
DICOM (Digital Imaging and Communications in
Medicine) images [2] [3] [4]. So that, the comparing
changes in the treatment can be made precisely according
to the patient's physiological changes. It demands to share
rapidly among the professionals.

Therefore, the GPGPU accelerates the entropy
coding technique with a tremendous speed an account of
parallelism. The well known and widely used Huffman
entropy coding technique is the most appropriate method
for the above said situation by providing the boosting
feature under the name of the parallelism where this will
be supporting the hardware and software environment.

2. BACKGROUND

Huffman and David proposed a basic method to
optimize the redundant data by reconstructing the
minimum code word per symbol and which sequentially
exploited in Oሺnlog ݊ሻ time. Each ݇𝑡ℎ probability called ܲሺ݇ሻof N symbols. ∑ ܲሺ݇ሻ = 1𝑁𝑘=ଵ , on the length of a
message, 𝐿ሺ݇ሻis the length of the code word of it. Hence,
the length of the message on an average is𝐿𝑎𝑣 =∑ ܲሺ݇ሻ𝐿ሺ݇ሻ𝑁𝑘=ଵ . The Huffman entropy coding technique
[5] widely used in various applications like image and

video compression algorithms and communication
protocols where we needed to compress the data.

An implementation of a serial Huffman coding
technique is made up of three major steps. The first step
histogram finds the occurrences of symbol probabilities
from the input stream. The second step constructs the
Huffman code tree, and the last one generates the binary
code word from the generated tree. Each symbol may
encode with a variable length bit according to their
occurrences in the input stream, whichever comes more
frequently that obtains unique shorter codes by assigning
for heavily used symbols and larger codes for fewer-used
symbols. Based on the symbol's code word can generate
the tree by picking up the minimum pair among input
symbols done it's by repetition. Generate code words for
each symbol by appending the codes by tree traversals
from root to leaf after the assignment of the alternative
codes by '0' (for Left Child) and '1' (for Right Child) to the
Huffman tree. These code words were appended to the
output stream one after one, other than this scenario not
feasible to perform in parallel. After distributing the data
as equal sizes to all chunks and they operate the tasks
independently because the arrangement of the output
stream has done bit by bit as serially.

Every step in an algorithm converted as a parallel
step except the building of the Huffman tree which
consumes more time since it is in serial. Many researchers
have investigated the Huffman coding algorithm on this
topic to convert it as parallel with different aspects.

P.Berman presented an efficient parallel Huffman
coding algorithm at a logarithmic time and linear work of
maximum code word length H in O(H) with n-processors
after sorting the elements. In any circumstances, the height
of the Huffman tree satisfies at O(log n) times [6]. Which
improves the construction of the Huffman tree in the
reduction scheme by a concave least weight subsequence

mailto:medasare@gmail.com

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7112

and it runs at O(√n log n) times, observed by Lawrence
and Larmore [25].

Ritesh Patel et al. [7], demonstrated a parallel
data compression algorithm on GPU through three major
parallel approaches (1) Burrows-Wheeler-Transform
(BWT), which practices the two level hierarchical sorting
schemes. (2) Move-To-Front transform (MTF), which uses
a parallel scanning system. (3) Huffman coding, which
executes a parallel reduction scheme by achieving the
reduction in logଶ ݊ − 1stages, in the bzip2 compression
pipeline in the parallel Lossless Data Compression on the
GPU environment. Mikael KarlssonRudberg and Lars
Wanhammar introduced in [8] a parallel Huffman decoder
model, which developed by adopting the pipeline method,
where it reduces the symbol decoder requirements, and the
proposed architectures run at high speed.

The worthwhile parallelized technology is the
GPGPU (General Purpose Graphics Processing Unit)
which exploits by the CPU (Central Processing Unit) [9].
The GPU is a specialized computing device which rapidly
manipulates at the high rate amount of graphical pixels.
The GPGPU modeled as different co-processing units by
the combination of CPU and GPU, where the application
instruction set has the serial portion that usually executes
on the CPU, and the rest of the computationally-intensive
non-serial portion runs on the GPU.

A new massive parallel architecture CUDA [10]
has introduced by NVIDIA where we accelerate
computations in parallel on the GPU unit. CUDA is a
parallel processing platform and programming model,
empowers impressive credits in computing performance
by the harness of the GPU [15, 16]. CUDA and GPU
create an incredible impression in the world of parallel
computations which motivated to pursue this work.

Ana Balevic introduces the Variable-Length
Encoding (VLE) is in [11] reduces the input data by
replacing the fixed length shorter code words. The
GPGPU architecture used to accelerate the process of
parallel compression blocks with atomic operations while
performing threads writing in the image transformation
and motion estimation and achieved speeds up to 35-50X.
This algorithm supports the fixed length code word to
substitute instead of variable length code words where it
restricted to 32bits, so this makes inconvenient to adapt.

In [12], R.L. Cloud, M.L. Curry, et al., presented
a Huffman coding technique that achieves the speed up to
3X by the composition of blocks compression separately in
the decompression portion. Rahmani H et al. [23]
presented a parallel Huffman entropy coder on the
NVIDIA CUDA platform, the code word constructed
serially for every symbol, later generate an output stream
as introducing a byte stream in parallel and achieved
22xspeed than the CPU’s serial code. Howard Paul G and
Jeffrey Scott Vitter [24], presented an algorithm for high-
resolution images using a hierarchical MLP method for
Huffman codes or quasi-arithmetic codes and made them
as parallel.

In this paper, where we required to perform an
entropy coding for an unbounded of image data flawlessly
as swift as that we proposed called as a compact parallel
Huffman encoding technique. We typically used different
lengths of image data to obtain the promising speed over
the CPU's speed.

3. PROPOSED METHOD

The Huffman coder has three major stages,
initially, generates the histogram bins to find the frequency
probability for every symbol in the input stream, the
second stage constructs the code word tree. In the third
stage, every symbol gets the code word from the tree by
applying traversal from root to leaf and finally compress
the bit stream as a bitstream form. The third step is the real
hurdle due to its variable length code word. During the
implementation, every stage can be performed in parallel
except the construction of a tree along with the assignment
of codes. In the parallel implementation, every symbol
obtains a CUDA thread generates the code word by
reading the word-wise (8, 16, 32, 64,...) adaptively from
the intermediate pixel's code word stream results likewise
it performs iteratively until exhausts the input symbols as
shown in Fig.5. Every symbol code word position should
find appropriately from the resulting code word stream by
a thread. These threads have to synchronize properly for
the same memory location without fail; this is called a race
condition, not only perform concurrent reads, but also
carry out the write operation on the property of atomicity
to avoid the race condition.

Due to the plethora of internal memory of every
thread, the code words can write parallelly onto the global
memory heedlessly without effect from synchronization
and race condition problems. The memory mentioned
problem conquered by the adoption of the parallel prefix
sum algorithm, where it finds the byte offset for every
symbol to store a code word in the encoded bitstream. In
the final step, combining an every consecutive 16bits from
the encoded bit stream and is shown as a compressed
hexadecimal bit stream and as parallels.

The Huffman entropy coding technique [5]
substitutes the symbol by a variable length bit code, where
the code word length is the symbol's recurrence of the
event.

The proposed parallel computational stages:
a) Find gray-level probabilities of symbols of finding the

Histogram parallelly on the GPU.

b) Find and combine two_min probabilities on the

GPU after the construction of a serial Huffman tree on

the CPU.

c) Generate code words by tree traversals after the

assignment of the alternative codes by '0' (for Left

Child) and '1' (for Right Child) on the GPU.

d) Apply a Parallel Prefix Sum to find the offset of a

symbol in the generated code word stream on the

GPU.

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7113

e) The compressed bit stream generated parallelly on the

GPU.

3.1 The major computational components
a) Find gray-level probabilities of symbols of finding the

Histogram parallelly on the GPU.

b) Construction of a Huffman tree with the parallel

searching for two_min values among the input

symbol probabilities.

c) The Prefix Sum procedure

3.1.1 Find the histogram probabilities parallel for

 every symbol on the GPU
The Histogram technique is the most appropriate

for many image processing applications where it requires
the compression. This technique determines the
frequencies of occurrence of symbols from the given input
image and keeps them as in order. The same procedure
makes it accelerates by the adoption of parallelism on the
suitable platform with an appropriate speed of 50% over
the previous GPU methods. Which can achieve by the
Threaded Register Interleaved Stride Histogram (TRISH)
histogram is a fully parallelized algorithm by avoiding

atomic operations and reducing the iterations of execution
by improving instruction level parallelism (ILP), thread
level parallelism (TLP), and bit-level parallelism (BLP)
[13].

The method of Podlozhnyuk’s 256-bin histogram
[14], the input image pixel’s magnitudes fragmented into
blocks of equal size. Each fragmented block is assigned to
the thread-block to process the sub-histogram separately.
The synchronization is not possible between thread-
blocks; therefore every thread-block generates the
intermediate sub-histogram as a result and have summed
up in the next level where it can synchronize (usually in
global GPU memory) among the threads to make the final
histogram of an image shown in Figure-1.

Every kernel thread-block is consisting an on-
chip shared memory to store sub-histogram values. The
block of multiple threads may attempt to modify a data
concurrently that may cause to arise the race condition
problem where the read and write operations are atomic.
Hence, the collision-free method like mutual exclusion
should adopt to overcome the race condition problem. In
the shared memory two kinds of collisions may occur one
is inter-warp (between two or more warps) and the second
one is intra-warp (within the warp).

Figure-1. An abstract level of the histogram technique with the children.

Figure-2. A leaf level scenario of a thread-block.

The Podlozhnyuk's method introduced a partial
level of its have histogram called warp-histogram in
Figure-2; there will be a synchronization barrier afterward
the warp-histograms are summed up as a sub-histogram.

There is an alternative solution to overcome the overhead
problem where each warp gets one histogram there will be
more histograms obtained by dividing the warp
magnitudes to threads. Means that every thread will get a

Level 1

0

Thread Block 0

SUB-HISTOGRAM

Warp 1 Warp 0 Warp 2 Warp 3

Warp-Histogram

Warp-Histogram

Warp-Histogram

Warp-Histogram

HISTOGRAM

Thread Block 0

Sub Histogram

Thread Block 1

Sub Histogram

Thread Block 2

Sub Histogram

Thread Block n

Sub Histogram

No.of Bins TB 0 No.of Bins TB 1 No.of Bins TB 2 No.of Bins TB n

Level 1

0

No.of Pixels

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7114

small warp-histogram. TRISH histogram method is faster
than the Podlozhnyuk's method by 3.4%. TRISH is the
most suitable to our proposed method.

3.1.2 Find and combine two_min probabilities

 parallelly on the GPU and construct a

 Huffman coding tree
For the construction of Huffman tree T proceed in

the bottom-up fashion. If e1 and e2 (leaves) are the
smallest histogram values in E, then a new optimal tree T'

where E'=E-{e1, e2} U {e1+e2} can extend to E. The two
leaves are emerging into the tree T with weights of e1 and
e2 as a leaf x of T' with a weight of e1+e2. The following
Huffman algorithm builds with two basic procedures and
executes in O(n log n) time by the adoption of
two_min() procedure.

1. Algorithm basic_Huffman (E)
Begin

1. While |E| > 1 do
2. (e1,e2) = two_min(E)
3. e=pair_elements({e1,e2})
4. E=(E-{e1,e2}U{e})
End While
End

The Huffman encoding stage is highly sequential
since codes are variable length bits due to its frequency of
occurrences. The coding computations are highly
dependent on the other codes, which are the issue, not able
to partition the computations.

Figure-3. Parallel reductions find the two smallest
occurrences.

two_min(E) procedure: We perform a parallel search to
determine the two_min()elements from the given set E.
Step2 replaced with a procedure of all_min(E),which
returns the min pair S from given set E. This scenario is
called parallel reduction. It obtains the two lowest
elements of the given set E, shown in Figure-3. This
algorithm executes in O(log log n) time per batch with n
CREW processors [6].

2. Algorithm batch_Huffman (E)
Begin

1.While |E| > 1 do
2.S= all_min(E)
3. S’=pair_elements(s)
4. E=(E-S U S’)
 End
End

Huffman contributed an artistic optimal prefix
coding algorithm in the year of 1952, which executes at 𝜪ሺ࢔𝒍࢕𝒈࢔ሻtime otherwise, which executes in the linear
time whenever the probabilities are in order [5].

3.1.3 The parallel prefix sum procedure on GPU

Every codeword location accurately computed by
knowing the length of the codeword to store in the
memory, so the codeword bit offset has to calculate by
accumulating all codeword lengths which were stored
precedently in the bit stream. These codes word locations
can be done wisely by using a parallel prefix sum
algorithm. The prefix sum algorithm is having a binary
associativity operator ⊕, where the input array a0, a1, ...,
an-1 and the generated output array b0, b1,,bn-1 such that
b0=0 and ܾ𝑘 = ܽ଴⊕ܽଵ ⊕ܽଶ⊕…⊕ ܽ𝑘−ଵ. Based on the
data parallel prefix-sum primitive approach [18, 19], the
output bit offset bk performed by the code word with the
lengths ak, and which allotted to the input symbol.

In Figure-5, the first input symbol 'D' offset is
typically is zero; the second symbol 'B' offset is five; the
offset of the third symbol 'S' is ten and the rest of the
symbols offset’s generated in the above manner. The
fastest parallel Blelloch's tree-based, inclusive-prefix-sum
algorithm is achieved [17, 18]. This parallel prefix sum
approach creates up-sweep and down-sweep binary trees
to reduce the result explained in the algorithm. 3.3. The
Prefix Sum approach uses the binary tree structure with
two basic functions up-sweep and down-sweep which
perform computations in a manner of parallel. An up-
sweep performs the binary tree computations in the way of
parallel at each level of the leaf nodes of the root node see
in Figure-4. The down-sweep performs the binary tree
computations in the way of parallel at each level of the
root node to the leaf node see in Figure-4.

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7115

Figure-4. Blelloch parallel prefixsum algorithm.

3. AlgorithmPrefixSumScan(<template>:input[n])

Begin
1. Fori=0 to lg2n -1do parallel
2. Forj=0 to n-1 step-up 2i+1do parallel
3. input[j+2i+1 -1]=input[j+2i-1]ʘinput[j+2i+1 -1];
End for
End for
4. input [n-1]=0;
5. Fori=lg2n-1to 0 do
6. Forj=0 to n-1 step-up 2i+1 do parallel
7. <Template>temp=input [j+2i-1];
8. in [j+2i -1]=input[j+2i+1 -1];//left-child
9. input [j+2i+1 -1]=temp ʘ input[j+ 2i+1-1];//right-child
End for
End for
End

The work complexity of O(n)and the depth of a
binary tree is 𝜪ሺ𝒍࢕𝒈𝑵ሻ.A further improvement, we can
refer a tree-based Blelloch's parallel prefix sum approach

is employed in work efficient algorithm which proposed
by Harris et al. [18] and Sengupta et al. [19].

During the generation of the encoding process,
each thread is composing a variable length bits the code-
word independently for every symbol with an adoption of
a depth first search tree traversal approach. All the threads
have concurrently written the code-words in the
intermediate encoded bit stream without entering into the
race condition. The final step of the compressed bit
stream, here all threads writing to the global memory
independently without overlapping or without a race
condition. The parallel tree traversal [21], every thread
required to spend ܱሺ݊/݌ + 𝑔݊ሻtime using p processors݋݈
within the EREM model, which delivers with the speed of ݌ ≤ .𝑔݊݋݈/݊

3.2 Numerical explanation
The CUDA launched a thread to handle a symbol

to find the histogram probability in parallel, which used to
construct a sequential Huffman tree for creating the code
word of every symbol. Finally, the compressed
hexadecimal stream has generated after applying the
adaptive reading of the code word stream as word-wise (8,
16, 32, 64) as shown in Figure-5. For instance, in step1 a
thread T0 finds the histogram probability as 0.16 of a color
D (Dark), in step2 this generates a code word 11110 from
the Huffman tree. In the final step, the thread T0 reads the
16bit word 1111010100111010 from the code-word
stream and this present as a hexadecimal for as 0XF53A
as the way remaining done in parallel.

4. EXPERIMENTAL RESULTS

The parallel Huffman coding algorithm
performance evaluation has done by comparing the CPU's
sequence coding upon the configuration of NVIDIA
GeForce 940MX GPU card and Core 2 Duo processor
with the CPU speed of 2.80 GHz is used to run the serial
code. We observed the experimental results in the
proposed algorithm achieves the acceleration where the
data size increases the way speed also increases from 2MB
to 32MB as shown in Figure-7. The variable length bits
used to encode a symbol code word. The proposed
algorithm achieves the speed up to 46% since the GPU
pipelines can be worked efficiently for the large volumes
of data and this is dominating the entire time of the task.

Therefore, this is the best for the large volumes of
data and not appropriate for the smaller ones. If the
changes made in the entropy (bits per symbol) the way
changes occurred in the speed as linearly varying. In many
cases not suggestible to fix the entropy length, especially
for DICOM images since it turned to lossy compression.
As per Fig.6, if the entropy of the data increased in size
along the way the speed will be increased up to 26%, and
the speedup will drop up to 21% when the entropy (2, 4, 8,
16) increases.

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7116

Figure-5. Parallel huffman encoding by word-wise (16 bit) stream.

Figure-6. Speedup achieved on the NVIDIA GeForce
940MX compared to with core 2 Duo CPU at a speed

of 2.80 GHz as the input data increases.

Figure-7. The entropy value increases from 4 to 32
along with the execution time.

Conversely, the DICOM images dealt with large
volumes of data typically the entropy bits size also will be
getting high. Therefore, the GPU operated smoothly by
using synchronization after the distribution of data among
the threads.

5. CONCLUSIONS

The parallel implementation of the Huffman code
technique on the environment of CUDA and it is
experimentally proven that the speed achieved up to 46X
over the serial CPU implementation under some
considerations. The four procedures computationally
major components in the proposed method when it
performed parallelly, except the construction of the
Huffman tree. The proposed algorithm runs on any type
and any size of input data for generating the code word
length. The complete parallelized approach performed
well with an incredible speed up where it moderates the
rush among the levels of threads, registers, and
instructions.

Henceforth, this does not only save the internal
memory but also compacts the time. The fully parallelized
adaptive Huffman coding technique is the most
appropriate for the color images where have been creating
the skewed binary tree or where the depth of the tree is
very high, that we considered as the future work to
resolve.

REFERENCES

[1] 2013. History of the Healthcare Information and

Management Systems Society (Formerly Hospital

Management Systems Society). Healthcare

Information and Management Systems Society.

[2] HIMSS, definition EHR,

http://www.himss.org/ASP/topics_ehr.asp. DICOM

brochure, nema.org.

[3] Kahn CE Jr, Carrino JA, Flynn MJ, Peck DJ, Horii

SC. DICOM and radiology: past, present, and future.

0

5

10

15

20

25

2 4 8 16

Data Size Vs Speed
with respect to Entropy

Image Size (MB)

Entropy

Entrpy Levels

S
p

ee
d

 M
S

ec

Speed

6.46 7.25 8.14 9.22

52.58 53.12 54.28 55.98

0

10

20

30

40

50

60

4 8 16 32

GPU

CPU

Entrpy Levels

S
p

ee
d

 M
S

ec

http://www.himss.org/ASP/topics_ehr.asp

 VOL. 12, NO. 24, DECEMBER 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 7117

Journal of the American College of Radiology 2007;

4:652-657. DOI 10.1016/j.jacr.2007.06.004

[4] Huffman D. 1952. A Method for the Construction of

Minimum-Redundancy Codes" (PDF), Proceedings of

the IRE. 40 (9): 1098–1101.

[5] Berman P., Karpinski M. and Nekrich Y. 2002.

Approximating Huffman codes in parallel. Automata,

Languages and Programming. pp. 778-778.

[6] Patel R. A., Zhang Y., Mak J., Davidson A. & Owens

J. D. 2012. Parallel lossless data compression on the

GPU. pp. 1-9. IEEE.

[7] Rudberg, Mikael Karlsson and Lars Wanhammar.

1997. High speed pipelined parallel Huffman

decoding. Circuits and Systems, 1997, ISCAS'97.

Proceedings of 1997 IEEE International Symposium

on. Vol. 3. IEEE.

[8] Atanasov Dimitar. 2005. General purpose GPU

programming. International Conference on Computer

Systems and Technologies-CompSysTech.

[9] 2011. NVIDIA Corporation. NVIDIA CUDA

computes unified device architecture, programming

guide.

[10] Balevic Ana. 2009. Parallel variable-length encoding

on GPGPUs. In European Conference on Parallel

Processing, pp. 26-35. Springer, Berlin, Heidelberg.

[11] Cloud, Robert Louis, Matthew L. Curry, H. Lee

Ward, Anthony Skjellum, and Purushotham

Bangalore. 2011. Accelerating lossless data

compression with GPUs. ar xiv preprint ar xiv:

1107.1525.

[12] Brown Shawn and Jack Snoeyink. 2012. Modestly

faster histogram computations on GPUs. Innovative

Parallel Computing (InPar).

[13] Podlozhnyuk V. 2007. Histogram calculation in

CUDA,Technical Report, Nvidia, URL:

[14] http://developer.download.nvidia.com/compute/cuda!I

I/Website/projects/histogram256/doc/histogram.pdf

[15] NVIDIA Corporation Technical Staff. NVIDIA

CUDA programmingguide 5.0. Technical report,

http://docs.nvidia.com/cuda/cuda-cprogramming-

guide.

[16] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym.

2008. NVIDIA Tesla: Aunified graphics and

computing architecture,” IEEE Micro, vol. 28, no.2,

pp. 39-55, 2008.

[17] Guy E. Blelloch. 1990. Prefix Sums and Their

Applications. In John H. Reif (Ed.), Synthesis of

Parallel Algorithms, Morgan Kaufmann.

[18] Mark Harris, Shubhabrata Sengupta and John D.

Owens. 2007. Parallel prefix sum (scan) with Cuda. In

Hubert Nguyen, editor, GPU Gems 3. Addison

Wesley.

[19] Harris, Mark, Shubhabrata Sengupta and John D.

Owens. 2007. Parallel prefix sum (scan) with CUDA.

GPU Gems 3.39: 851-

876.https://classroom.udacity.com/courses/cs344.

[20] Shubhabrata Sengupta, Mark Harris, Yao Zhang and

John D. Owens. Scan primitives for GPU computing.

In Proceedings of the 22nd ACM

SIGGRAPH/EUROGRAPHICS Symposium on

Graphics Hardware, GH '07 pages 97_106.

[21] Chen Calvin C-Y., Sajal K. Das and Selim G. Akl.

1991. A unified approach to parallel depth-first

traversals of general trees. Information Processing

Letters. 38.1: 49-55.

[22] Atallah, Mikhail J., et al. 1989. Constructing trees in

parallel. Proceedings of the first annual ACM

symposium on Parallel algorithms and architectures.

ACM.

[23] Rahmani H, Topal C, Akinlar C. 2014. A parallel

Huffman coder on the CUDA architecture. InVisual

Communications and Image Processing Conference,

2014 IEEE Dec 7 (pp. 311-314). IEEE.

[24] Howard Paul G. and Jeffrey Scott Vitter. 1992.

Parallel lossless image compression using Huffman

and arithmetic coding. In Data Compression

Conference, 1992. DCC'92. pp. 299-308. IEEE.

[25] Larmore Lawrence L. and Teresa M. Przytycka. 1995.

Constructing Huffman trees in parallel. SIAM Journal

on Computing. 24(6): 1163-1169.

http://developer.download.nvidia.com/compute/cuda!II/Website/projects/histogram256/doc/histogram.pdf
http://developer.download.nvidia.com/compute/cuda!II/Website/projects/histogram256/doc/histogram.pdf
http://docs.nvidia.com/cuda/cuda-cprogramming-guide
http://docs.nvidia.com/cuda/cuda-cprogramming-guide
https://classroom.udacity.com/courses/cs344

